Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Biol Pharm Bull ; 47(3): 562-579, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38432912

RESUMO

It was long believed that D-amino acids were either unnatural isomers or laboratory artifacts, and that the important functions of amino acids were exerted only by L-amino acids. However, recent investigations have revealed a variety of D-amino acids in mammals that play important roles in physiological functions, including free D-serine and D-aspartate that are crucial in the central nervous system. The functions of several D-amino acids in the periphery and endocrine glands are also receiving increasing attention. Here, we present an overview of recent advances in elucidating the physiological roles of D-amino acids, especially in the periphery and endocrine glands.


Assuntos
Aminoácidos , Glândulas Endócrinas , Animais , Ácido Aspártico , Sistema Nervoso Central , Isomerismo , Mamíferos
2.
Biosci Biotechnol Biochem ; 86(11): 1536-1542, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36085174

RESUMO

Various d-amino acids play important physiological roles in mammals, but the pathways of their production remain unknown except for d-serine, which is generated by serine racemase. Previously, we found that Escherichia coli cystathionine ß-lyase possesses amino acid racemase activity in addition to ß-lyase activity. In the present work, we evaluated the enzymatic activities of human cystathionine γ-lyase, which shares a relatively high amino acid sequence identity with cystathionine ß-lyase. The enzyme did not show racemase activity toward various amino acids including alanine and lyase and dehydratase activities were highest toward l-cystathionine and l-homoserine, respectively. The enzyme also showed weak activity toward l-cysteine and l-serine but no activity toward d-amino acids. Intriguingly, the pH and temperature profiles of lyase activity were distinct from those of dehydratase activity. Catalytic efficiency was higher for lyase activity than for dehydratase activity.


Assuntos
Isomerases de Aminoácido , Liases , Humanos , Animais , Cistationina gama-Liase/química , Cistationina gama-Liase/metabolismo , Aminoácidos , Cistationina , Cisteína , Homosserina , Liases/metabolismo , Escherichia coli/metabolismo , Serina , Racemases e Epimerases , Alanina , Hidroliases , Mamíferos/metabolismo
3.
J Neurosci ; 40(39): 7531-7544, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32855271

RESUMO

d-Serine (d-Ser) is a coagonist for NMDA-type glutamate receptors and is thus important for higher brain function. d-Ser is synthesized by serine racemase and degraded by d-amino acid oxidase. However, the significance of these enzymes and the relevant functions of d-amino acids remain unclear. Here, we show that in the nematode Caenorhabditis elegans, the serine racemase homolog SERR-1 and d-amino acid oxidase DAAO-1 control an adaptive foraging behavior. Similar to many organisms, C. elegans immediately initiates local search for food when transferred to a new environment. With prolonged food deprivation, the worms exhibit a long-range dispersal behavior as the adaptive foraging strategy. We found that serr-1 deletion mutants did not display this behavior, whereas daao-1 deletion mutants immediately engaged in long-range dispersal after food removal. A quantitative analysis of d-amino acids indicated that d-Ser and d-alanine (d-Ala) are both synthesized and suppressed during food deprivation. A behavioral pharmacological analysis showed that the long-range dispersal behavior requires NMDA receptor desensitization. Long-term pretreatment with d-Ala, as well as with an NMDA receptor agonist, expanded the area searched by wild-type worms immediately after food removal, whereas pretreatment with d-Ser did not. We propose that d-Ser and d-Ala are endogenous regulators that cooperatively induce the long-range dispersal behavior in C. elegans through actions on the NMDA receptor.SIGNIFICANCE STATEMENT In mammals, d-serine (d-Ser) functions as an important neuromodulator of the NMDA-type glutamate receptor, which regulates higher brain functions. In Caenorhabditis elegans, previous studies failed to clearly define the physiological significance of d-Ser, d-alanine (d-Ala), and their metabolic enzymes. In this study, we found that these d-amino acids and their associated enzymes are active during food deprivation, leading to an adaptive foraging behavior. We also found that this behavior involved NMDA receptor desensitization.


Assuntos
Alanina/farmacologia , Proteínas de Caenorhabditis elegans/metabolismo , Comportamento Alimentar , Receptores de N-Metil-D-Aspartato/metabolismo , Serina/farmacologia , Alanina/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/fisiologia , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , D-Aminoácido Oxidase/genética , D-Aminoácido Oxidase/metabolismo , Movimento , Racemases e Epimerases/genética , Racemases e Epimerases/metabolismo , Serina/metabolismo
4.
J Cell Biochem ; 122(11): 1639-1652, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34289161

RESUMO

Multiple d-amino acids are present in mammalian cells, and these compounds have distinctive physiological functions. Among the free d-amino acids identified in mammals, d-aspartate plays critical roles in the neuroendocrine and endocrine systems, as well as in the central nervous system. Mammalian cells have the molecular apparatus necessary to take up, degrade, synthesize, and release d-aspartate. In particular, d-aspartate is degraded by d-aspartate oxidase (DDO), a peroxisome-localized enzyme that catalyzes the oxidative deamination of d-aspartate to generate oxaloacetate, hydrogen peroxide, and ammonia. However, little is known about the molecular mechanisms underlying d-aspartate homeostasis in cells. In this study, we established a cell line that overexpresses cytoplasm-localized DDO; this cell line cannot survive in the presence of high concentrations of d-aspartate, presumably because high levels of toxic hydrogen peroxide are produced by metabolism of abundant d-aspartate by DDO in the cytoplasm, where hydrogen peroxide cannot be removed due to the absence of catalase. Next, we transfected these cells with a complementary DNA library derived from the human brain and screened for clones that affected d-aspartate metabolism and improved cell survival, even when the cells were challenged with high concentrations of d-aspartate. The screen identified a clone of glyoxylate reductase/hydroxypyruvate reductase (GRHPR). Moreover, the GRHPR metabolites glyoxylate and hydroxypyruvate inhibited the enzymatic activity of DDO. Furthermore, we evaluated the effects of GRHPR and peroxisome-localized DDO on d- and l-aspartate levels in cultured mammalian cells. Our findings show that GRHPR contributes to the homeostasis of these amino acids in mammalian cells.


Assuntos
Oxirredutases do Álcool/metabolismo , Ácido Aspártico/metabolismo , Oxirredutases do Álcool/genética , Ácido Aspártico/farmacologia , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Sobrevivência Celular/efeitos dos fármacos , D-Aspartato Oxidase/antagonistas & inibidores , D-Aspartato Oxidase/genética , D-Aspartato Oxidase/metabolismo , Glioxilatos/metabolismo , Glioxilatos/farmacologia , Células HEK293 , Células HeLa , Humanos , NADP , Piruvatos/metabolismo , Piruvatos/farmacologia
5.
Amino Acids ; 53(6): 903-915, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33938999

RESUMO

The peptidoglycan of the hyperthermophile Thermotoga maritima contains an unusual component, D-lysine (D-Lys), in addition to the typical D-alanine (D-Ala) and D-glutamate (D-Glu). In a previous study, we identified a Lys racemase that is presumably associated with D-Lys biosynthesis. However, our understanding of D-amino acid metabolism in T. maritima and other bacteria remains limited, although D-amino acids in the peptidoglycan are crucial for preserving bacterial cell structure and resistance to environmental threats. Herein, we characterized enzymatic and structural properties of TM0356 that shares a high amino acid sequence identity with serine (Ser) racemase. The results revealed that TM0356 forms a tetramer with each subunit containing a pyridoxal 5'-phosphate as a cofactor. The enzyme did not exhibit racemase activity toward various amino acids including Ser, and dehydratase activity was highest toward L-threonine (L-Thr). It also acted on L-Ser and L-allo-Thr, but not on the corresponding D-amino acids. The catalytic mechanism did not follow typical Michaelis-Menten kinetics; it displayed a sigmoidal dependence on substrate concentration, with highest catalytic efficiency (kcat/K0.5) toward L-Thr. Interestingly, dehydratase activity was insensitive to allosteric regulators L-valine and L-isoleucine (L-Ile) at low concentrations, while these L-amino acids are inhibitors at high concentrations. Thus, TM0356 is a biosynthetic Thr dehydratase responsible for the conversion of L-Thr to α-ketobutyrate and ammonia, which is presumably involved in the first step of the biosynthesis of L-Ile.


Assuntos
Proteínas de Bactérias/química , Thermotoga maritima/enzimologia , Treonina Desidratase/química , Proteínas de Bactérias/genética , Domínios Proteicos , Thermotoga maritima/genética , Treonina Desidratase/genética
6.
Biochem J ; 477(21): 4221-4241, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33079132

RESUMO

Recent investigations have shown that multiple d-amino acids are present in mammals and these compounds have distinctive physiological functions. Free d-glutamate is present in various mammalian tissues and cells and in particular, it is presumably correlated with cardiac function, and much interest is growing in its unique metabolic pathways. Recently, we first identified d-glutamate cyclase as its degradative enzyme in mammals, whereas its biosynthetic pathway in mammals is unclear. Glutamate racemase is a most probable candidate, which catalyzes interconversion between d-glutamate and l-glutamate. Here, we identified the cDNA encoding l-serine dehydratase-like (SDHL) as the first mammalian clone with glutamate racemase activity. This rat SDHL had been deposited in mammalian databases as a protein of unknown function and its amino acid sequence shares ∼60% identity with that of l-serine dehydratase. Rat SDHL was expressed in Escherichia coli, and the enzymatic properties of the recombinant were characterized. The results indicated that rat SDHL is a multifunctional enzyme with glutamate racemase activity in addition to l-serine/l-threonine dehydratase activity. This clone is hence abbreviated as STDHgr. Further experiments using cultured mammalian cells confirmed that d-glutamate was synthesized and l-serine and l-threonine were decomposed. It was also found that SDHL (STDHgr) contributes to the homeostasis of several other amino acids.


Assuntos
Isomerases de Aminoácido/metabolismo , L-Serina Desidratase/metabolismo , Aminoácidos/metabolismo , Animais , DNA Complementar/metabolismo , Escherichia coli/metabolismo , Ácido Glutâmico/metabolismo , Humanos
7.
Anal Biochem ; 605: 113838, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32702438

RESUMO

In mammals, metabolism of free d-glutamate is regulated by d-glutamate cyclase (DGLUCY), which reversibly converts d-glutamate to 5-oxo-d-proline and H2O. Metabolism of these d-amino acids by DGLUCY is thought to regulate cardiac function. In this study, we established a simple, accurate, and sensitive colorimetric assay method for measuring DGLUCY activity. To this end, we optimized experimental procedures for derivatizing 5-oxo-d-proline with 2-nitrophenylhydrazine hydrochloride. 5-Oxo-d-proline was derivatized with 2-nitrophenylhydrazine hydrochloride in the presence of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide as a catalyst to generate the acid hydrazides, whose levels were then determined using a colorimetric method. Under optimized conditions, we examined the sensitivity and accuracy of the colorimetric method and compared our technique with other methods by high-performance liquid chromatography with ultraviolet-visible or fluorescence detection. Moreover, we assessed the suitability of this colorimetric method for measuring DGLUCY activity in biological samples. Our colorimetric method could determine DGLUCY activity with adequate validity and reliability. This method will help to elucidate the relationship among DGLUCY activity, the physiological and pathological roles of d-glutamate and 5-oxo-d-proline, and cardiac function.


Assuntos
Colorimetria/métodos , Hidroliases/análise , Animais , Células Cultivadas , Fibroblastos , Camundongos , Sensibilidade e Especificidade
8.
Amino Acids ; 52(3): 487-497, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32108264

RESUMO

Bacteria produce various D-amino acids, including non-canonical D-amino acids, to adapt to environmental changes and overcome a variety of threats. These D-amino acids are largely utilized as components of peptidoglycan, and they promote peptidoglycan remodeling and biofilm disassembly. The biosynthesis, maturation, and recycling of peptidoglycan are catalyzed by penicillin-binding proteins (PBPs). However, although non-canonical D-amino acids are known to be incorporated into peptidoglycan, the maturation and recycling of peptidoglycan containing such residues remain uncharacterized. Therefore, we investigated whether PBP4 and PBP5, low molecular mass (LMM) PBPs from Escherichia coli and Bacillus subtilis, are involved in these events of peptidoglycan metabolism. Enzyme assays using p-nitroaniline (pNA)-derivatized D-amino acids and peptidoglycan-mimicking peptides revealed that PBP4 and PBP5 from both species have peptidase activity toward substrates containing D-Asn, D-His, or D-Trp. These D-amino acids slowed the growth of dacA- or dacB-deficient E. coli (∆dacA or ∆dacB) relative to the wild-type strain. Additionally, these D-amino acids affected biofilm formation by the ∆dacB strain. Collectively, PBP4 and PBP5 are involved in the cleavage of peptidoglycan containing non-canonical D-amino acids, and these properties affect growth and biofilm formation.


Assuntos
Aminoácidos/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Ligação às Penicilinas/metabolismo , Peptidoglicano/metabolismo , D-Ala-D-Ala Carboxipeptidase Tipo Serina/metabolismo , Aminoácidos/química , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Biofilmes/crescimento & desenvolvimento , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Ligação às Penicilinas/química , Proteínas de Ligação às Penicilinas/genética , Peptidoglicano/química , D-Ala-D-Ala Carboxipeptidase Tipo Serina/química , D-Ala-D-Ala Carboxipeptidase Tipo Serina/genética
9.
Amino Acids ; 52(4): 597-617, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32185508

RESUMO

The free D-amino acid, D-aspartate, is abundant in the embryonic brain but significantly decreases after birth. Besides its intracellular occurrence, D-aspartate is also present at extracellular level and acts as an endogenous agonist for NMDA and mGlu5 receptors. These findings suggest that D-aspartate is a candidate signaling molecule involved in neural development, influencing brain morphology and behaviors at adulthood. To address this issue, we generated a knockin mouse model in which the enzyme regulating D-aspartate catabolism, D-aspartate oxidase (DDO), is expressed starting from the zygotic stage, to enable the removal of D-aspartate in prenatal and postnatal life. In line with our strategy, we found a severe depletion of cerebral D-aspartate levels (up to 95%), since the early stages of mouse prenatal life. Despite the loss of D-aspartate content, Ddo knockin mice are viable, fertile, and show normal gross brain morphology at adulthood. Interestingly, early D-aspartate depletion is associated with a selective increase in the number of parvalbumin-positive interneurons in the prefrontal cortex and also with improved memory performance in Ddo knockin mice. In conclusion, the present data indicate for the first time a biological significance of precocious D-aspartate in regulating mouse brain formation and function at adulthood.


Assuntos
Encéfalo/embriologia , D-Aspartato Oxidase/metabolismo , Ácido D-Aspártico/deficiência , Animais , Encéfalo/metabolismo , Cognição , D-Aspartato Oxidase/genética , Técnicas de Introdução de Genes , Ácido Glutâmico/análise , Masculino , Camundongos , Teste do Labirinto Aquático de Morris , Teste de Campo Aberto , Córtex Pré-Frontal/embriologia , Córtex Pré-Frontal/metabolismo , Serina/análise
10.
No Shinkei Geka ; 48(8): 733-738, 2020 Aug.
Artigo em Japonês | MEDLINE | ID: mdl-32830139

RESUMO

We experienced a case of unruptured internal carotid artery aneurysm improved endocrinological function after the treatment. A 68-year-old woman was admitted to our hospital complaining of general fatigue, dizziness, and decreased visual acuity. Radiological examination revealed unruptured large aneurysm at the right anterior carotid artery compressing on the pituitary gland. We underwent right STA-MCA bypass and trapping of right internal carotid artery. Post-operative course was uneventful. Although visual function was not improved, her endocrinological function was improved 8 months after surgery by thrombosed and shrunken aneurysm. The mechanism of panhypopituitarism due to aneurysm has been suggested to involve mechanical compression on the pituitary gland, pituitary stalk, or hypophyseal artery. Although it was unclear about the improvement of endocrine function after the treatment of aneurysm, some cases could recover the hypopituitarism after enough follow-up period.


Assuntos
Doenças das Artérias Carótidas , Revascularização Cerebral , Hipopituitarismo , Aneurisma Intracraniano , Idoso , Artéria Carótida Interna/cirurgia , Feminino , Humanos
11.
Biochem J ; 475(8): 1397-1410, 2018 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-29592871

RESUMO

Non-canonical d-amino acids play important roles in bacteria including control of peptidoglycan metabolism and biofilm disassembly. Bacteria appear to produce non-canonical d-amino acids to adapt to various environmental changes, and understanding the biosynthetic pathways is important. We identified novel amino acid racemases possessing the ability to produce non-canonical d-amino acids in Escherichia coli and Bacillus subtilis in our previous study, whereas the biosynthetic pathways of these d-amino acids still remain unclear. In the present study, we demonstrated that two cystathionine ß-lyases (MetC and MalY) from E. coli produce non-canonical d-amino acids including non-proteinogenic amino acids. Furthermore, MetC displayed d- and l-serine (Ser) dehydratase activity. We characterised amino acid racemase, Ser dehydratase and cysteine lyase activities, and all were higher for MetC. Interestingly, all three activities were at a comparable level for MetC, although optimal conditions for each reaction were distinct. These results indicate that MetC and MalY are multifunctional enzymes involved in l-methionine metabolism and the production of d-amino acids, as well as d- and l-Ser metabolism. To our knowledge, this is the first evidence that cystathionine ß-lyase is a multifunctional enzyme with three different activities.


Assuntos
Escherichia coli/enzimologia , Liases/metabolismo , Metionina/metabolismo , Serina/metabolismo , Cinética , Liases/genética , Especificidade por Substrato
12.
Biochim Biophys Acta Proteins Proteom ; 1866(7): 775-782, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29292238

RESUMO

Biomolecular homochirality refers to the assumption that amino acids in all living organisms were believed to be of the l-configuration. However, free d-amino acids are present in a wide variety of organisms and d-amino acid residues are also found in various peptides and proteins, being generated by enzymatic or non-enzymatic isomerization. In mammals, peptides and proteins containing d-amino acids have been linked to various diseases, and they act as novel disease biomarkers. Analytical methods capable of precisely detecting and quantifying d-amino acids in peptides and proteins are therefore important and useful, albeit their difficulty and complexity. Herein, we reviewed conventional analytical methods, especially 0h extrapolating method, and the problems of this method. For the solution of these problems, we furthermore described our recently developed, sensitive method, deuterium-hydrogen exchange method, to detect innate d-amino acid residues in peptides and proteins, and its applications to sample ovalbumin. This article is part of a Special Issue entitled: d-Amino acids: biology in the mirror, edited by Dr. Loredano Pollegioni, Dr. Jean-Pierre Mothet and Dr. Molla Gianluca.


Assuntos
Aminoácidos/análise , Peptídeos/química , Proteínas/química , Hidrólise
13.
Biochim Biophys Acta Proteins Proteom ; 1866(7): 806-812, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29292239

RESUMO

d-Aspartate oxidase (DDO) is a degradative enzyme that is stereospecific for the acidic amino acid d-aspartate, an endogenous agonist of the N-methyl-d-aspartate (NMDA) receptor. Dysregulation of NMDA receptor-mediated neurotransmission has been implicated in the onset of various neuropsychiatric disorders including schizophrenia, as well as chronic pain. Thus, appropriate regulation of d-aspartate is believed to be important for maintaining proper neural activity in the nervous system. Accordingly, much attention has been paid to the role(s) of DDO in the metabolism of d-aspartate in vivo, and the physiological functions of DDO have been actively investigated using experimental rats and mice. However, detailed characterisation of rat DDO has not yet been performed, and little is known about species-specific differences in the properties of mammalian DDOs. In this study, the structural and enzymatic properties of purified recombinant rat, mouse and human DDOs were examined and compared. The results showed that rat DDO is more similar to human DDO than to mouse DDO. This work provides useful insight into the use of rats as an experimental model for investigating the biological significance of human DDO and/or d-aspartate. This article is part of a Special Issue entitled: d-Amino acids: biology in the mirror, edited by Dr. Loredano Pollegioni, Dr. Jean-Pierre Mothet and Dr. Molla Gianluca.


Assuntos
D-Aspartato Oxidase/metabolismo , Animais , Ácido Aspártico/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Ratos , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Especificidade da Espécie , Estereoisomerismo , Temperatura
14.
Arch Biochem Biophys ; 654: 10-18, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30003876

RESUMO

d-Glutamate cyclase (DGLUCY) is a unique enzyme that reversibly converts free d-glutamate to 5-oxo-d-proline and H2O. Mammalian DGLUCY is highly expressed in the mitochondrial matrix in the heart, and its downregulation disrupts d-glutamate and/or 5-oxo-d-proline levels, contributing to the onset and/or exacerbation of heart failure. However, detailed characterisation of DGLUCY has not yet been performed. Herein, the structural and enzymatic properties of purified recombinant mouse DGLUCY were examined. The results revealed a dimeric oligomerisation state, and both d-glutamate-to-5-oxo-d-proline and 5-oxo-d-proline-to-d-glutamate reactions were catalysed in a stereospecific manner. Catalytic activity is modulated by divalent cations and nucleotides including ATP and ADP. Interestingly, the presence of Mn2+ completely abolished the 5-oxo-d-proline-to-d-glutamate reaction but stimulated the d-glutamate-to-5-oxo-d-proline reaction. The optimum pH is ∼8.0, similar to that in the mitochondrial matrix, and the catalytic efficiency for d-glutamate is markedly higher than that for 5-oxo-d-proline. These findings suggest that DGLUCY functions as a metalloenzyme that degrades d-glutamate in the mitochondrial matrix in mammalian cells. The results also provide insight into the correlation between DGLUCY enzyme activity and the physiological and pathological roles of d-glutamate and 5-oxo-d-proline in cardiac function, which is of relevance to the risk of onset of heart failure.


Assuntos
Hidroliases/química , Hidroliases/metabolismo , Animais , Catálise , Dimerização , Eletroforese em Gel de Poliacrilamida , Ácido Glutâmico/metabolismo , Hidroliases/isolamento & purificação , Concentração de Íons de Hidrogênio , Cinética , Manganês/metabolismo , Camundongos , Mitocôndrias/metabolismo , Prolina/metabolismo , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
15.
Genes Cells ; 21(9): 966-77, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27458110

RESUMO

Free d-serine (d-Ser) plays a crucial role in regulating brain function in mammals. In various organisms, including mammals, d-Ser is biosynthesized by Ser racemase, a synthetic enzyme that produces d-Ser from l-Ser. Ser racemase also exhibits dehydratase activity toward several hydroxyamino acids. Thus, this enzyme is unique in that it possesses the capability to both synthesize and degrade d-Ser; however, the physiological significance of its degradative activity remains unclear. In contrast to the physiological roles of d-Ser in mammals, little is known about the role of this amino acid in lower organisms, including the nematode Caenorhabditis elegans. It is known that a mammalian Ser racemase homologue (T01H8.2) from C. elegans exhibits racemase activity. Here, the enzymatic properties of recombinant T01H8.2 were characterized and compared with those of recombinant human Ser racemase. Furthermore, the levels of several d- and l-amino acids were measured in wild-type C. elegans and in a mutant in which the T01H8.2 gene is partially deleted and thereby inactivated. The results indicate that T01H8.2 also shows dehydratase activity toward several hydroxyamino acids, although the enzyme is not critical for Ser metabolism in vivo. The possible physiological roles of T01H8.2 are discussed.


Assuntos
Racemases e Epimerases/metabolismo , Serina/metabolismo , Sequência de Aminoácidos , Animais , Caenorhabditis elegans , Coenzimas/metabolismo , Humanos , Cinética , Racemases e Epimerases/química , Racemases e Epimerases/genética , Homologia de Sequência
16.
Biochim Biophys Acta Proteins Proteom ; 1865(9): 1129-1140, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28629864

RESUMO

d-Aspartate oxidase (DDO) is a degradative enzyme that is stereospecific for the acidic amino acid d-aspartate, an endogenous agonist of the N-methyl-d-aspartate (NMDA) receptor. Dysregulation of NMDA receptor-mediated neurotransmission has been implicated in the onset of various neuropsychiatric disorders including schizophrenia and in chronic pain. Thus, appropriate regulation of the amount of d-aspartate is believed to be important for maintaining proper neural activity in the nervous system. Herein, the effects of the non-synonymous single nucleotide polymorphisms (SNPs) R216Q and S308N on several properties of human DDO were examined. Analysis of the purified recombinant enzyme showed that the R216Q and S308N substitutions reduce enzyme activity towards acidic d-amino acids, decrease the binding affinity for the coenzyme flavin adenine dinucleotide and decrease the temperature stability. Consistent with these findings, further experiments using cultured mammalian cells revealed elevated d-aspartate in cultures of R216Q and S308N cells compared with cells expressing wild-type DDO. Furthermore, accumulation of several amino acids other than d-aspartate also differed between these cultures. Thus, expression of DDO genes carrying the R216Q or S308N SNP substitutions may increase the d-aspartate content in humans and alter homeostasis of several other amino acids. This work may aid in understanding the correlation between DDO activity and the risk of onset of NMDA receptor-related diseases.


Assuntos
D-Aspartato Oxidase/química , Polimorfismo de Nucleotídeo Único , Substituição de Aminoácidos , Aminoácidos/metabolismo , Animais , Ácido Aspártico/metabolismo , Linhagem Celular Tumoral , D-Aspartato Oxidase/genética , D-Aspartato Oxidase/metabolismo , Agonistas de Aminoácidos Excitatórios/metabolismo , Antagonistas de Aminoácidos Excitatórios/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Humanos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Neoplasias Hipofisárias/patologia , Ligação Proteica , Conformação Proteica , Ratos , Receptores de N-Metil-D-Aspartato/fisiologia , Proteínas Recombinantes/química , Estereoisomerismo , Relação Estrutura-Atividade , Especificidade por Substrato , Transfecção
17.
Amino Acids ; 49(11): 1885-1894, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28894939

RESUMO

The peptidoglycan layer of the bacterial cell wall typically contains D-alanine (D-Ala) and D-glutamic acid (D-Glu), and also various non-canonical D-amino acids that have been linked to peptidoglycan remodeling, inhibition of biofilm formation, and triggering of biofilm disassembly. Bacteria produce D-amino acids when adapting to environmental changes as a common survival strategy. In our previous study, we detected non-canonical D-amino acids in Escherichia coli grown in minimal medium. However, the biosynthetic pathways of non-canonical D-amino acids remain poorly understood. In the present study, we identified amino acid racemases in E. coli MG1655 (YgeA) and Bacillus subtilis (RacX) that produce non-canonical D-amino acids other than D-Ala and D-Glu. We characterized their enzymatic properties, and both displayed broad substrate specificity but low catalytic activity. YgeA preferentially catalyzes the racemization of homoserine, while RacX preferentially racemizes arginine, lysine, and ornithine. RacX is dimeric, and appears not to require pyridoxal 5'-phosphate (PLP) as a coenzyme as is the case with YgeA. To our knowledge, this is the first report on PLP-independent amino acid racemases possessing broad substrate specificity in E. coli and B. subtilis.


Assuntos
Isomerases de Aminoácido/química , Isomerases de Aminoácido/metabolismo , Aminoácidos/metabolismo , Bacillus subtilis/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Escherichia coli/enzimologia , Isomerases de Aminoácido/análise , Isomerases de Aminoácido/isolamento & purificação , Aminoácidos/química , Proteínas de Bactérias/análise , Proteínas de Bactérias/isolamento & purificação , Domínio Catalítico , Isomerismo , Cinética , Modelos Moleculares , Conformação Proteica , Estrutura Quaternária de Proteína , Especificidade por Substrato
18.
Rinsho Byori ; 65(1): 67-80, 2017 01.
Artigo em Japonês | MEDLINE | ID: mdl-30695514

RESUMO

It was long considered that.D-amino acids were either unnatural isomers or laboratorial artifacts, and that the important functions of amino acids were exerted only by L-amino acids. However, recent investigations have shown that a variety of D-amino acids are present in various organisms, including mammals, and that they play important roles in physiological functions in the body. Here, we present an overview of recent studies of free D-amino acids, focusing on the expression and localization in tissues and cells, biological and physiological activities, biosynthesis, cellular transport, and degradation. From the point of view of human pathophysiology, the possible relevance of free D-amino acids to disease is also described. [Review].


Assuntos
Aminoácidos/metabolismo , Animais , Biomarcadores/análise , Microbioma Gastrointestinal , Humanos , Mutação , Fenótipo
19.
Amino Acids ; 48(11): 2683-2692, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27475422

RESUMO

In this study, we investigated whether the amino acid residues within peptides were isomerized (and the peptides converted to diastereomers) during the early stages of acid hydrolysis. We demonstrate that the model dipeptides L-Ala-L-Phe and L-Phe-L-Ala are epimerized to produce the corresponding diastereomers at a very early stage, prior to their acid hydrolytic cleavage to amino acids. Furthermore, the sequence-inverted dipeptides were generated via formation of a diketopiperazine during hydrolytic incubation, and these dipeptides were also epimerized. The proportion of diastereomers increased rapidly during incubation for 0.5-2 h. During acid hydrolysis, C-terminal residues of the model dipeptides were isomerized faster than N-terminal residues, consistent with the observation that the D-amino acid values of the C-terminal residues determined by the 0 h-extrapolating method were larger than those of the N-terminal residues. Thus, the artificial D-amino acid contents determined by the 0 h-extrapolating method appear to be products of the isomerization of amino acid residues during acid hydrolysis.


Assuntos
Aminoácidos/química , Peptídeos/química , Hidrólise , Estereoisomerismo
20.
Extremophiles ; 20(4): 385-93, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27094682

RESUMO

Functional and structural characterizations of pyridoxal 5'-phosphate-independent aspartate racemase of the acidothermophilic archaeon Picrophilus torridus were performed. Picrophilus aspartate racemase exhibited high substrate specificity to aspartic acid. The optimal reaction temperature was 60 °C, which is almost the same as the optimal growth temperature. Reflecting the low pH in the cytosol, the optimal reaction pH of Picrophilus aspartate racemase was approximately 5.5. However, the activity at the putative cytosolic pH of 4.6 was approximately 6 times lower than that at the optimal pH of 5.5. The crystal structure of Picrophilus aspartate racemase was almost the same as that of other pyridoxal 5'-phosphate -independent aspartate racemases. In two molecules of the dimer, one molecule contained a tartaric acid molecule in the catalytic site; the structure of the other molecule was relatively flexible. Finally, we examined the intracellular existence of D-amino acids. Unexpectedly, the proportion of D-aspartate to total aspartate was not very high. In contrast, both D-proline and D-alanine were observed. Because Picrophilus aspartate racemase is highly specific to aspartate, other amino acid racemases might exist in Picrophilus torridus.


Assuntos
Isomerases de Aminoácido/química , Proteínas Arqueais/química , Thermoplasmales/enzimologia , Isomerases de Aminoácido/genética , Isomerases de Aminoácido/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Estabilidade Enzimática , Especificidade por Substrato , Thermoplasmales/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa