Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Photosynth Res ; 159(1): 17-28, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38112862

RESUMO

Enhancing leaf photosynthetic capacity is essential for improving the yield of rice (Oryza sativa L.). Although the exploitation of natural genetic resources is considered a promising approach to enhance photosynthetic capacity, genomic factors related to the genetic diversity of leaf photosynthetic capacity have yet to be fully elucidated due to the limitation of measurement efficiency. In this study, we aimed to identify novel genomic regions for the net CO2 assimilation rate (A) by combining genome-wide association study (GWAS) and the newly developed rapid closed gas exchange system MIC-100. Using three MIC-100 systems in the field at the vegetative stage, we measured A of 168 temperate japonica rice varieties with six replicates for three years. We found that the modern varieties exhibited higher A than the landraces, while there was no significant relationship between the release year and A among the modern varieties. Our GWAS scan revealed two major peaks located on chromosomes 4 and 8, which were repeatedly detected in the different experiments and in the generalized linear modelling approach. We suggest that high-throughput gas exchange measurements combined with GWAS is a reliable approach for understanding the genetic mechanisms underlying photosynthetic diversities in crop species.


Assuntos
Oryza , Oryza/genética , Estudo de Associação Genômica Ampla , Fotossíntese/genética , Folhas de Planta/genética
2.
Sci Rep ; 11(1): 7579, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33828128

RESUMO

Leaf photosynthetic rate changes across the growing season as crop plants age. Most studies of leaf photosynthesis focus on a specific growth stage, leaving the question of which pattern of photosynthetic dynamics maximizes crop productivity unanswered. Here we obtained high-frequency data of canopy leaf CO2 assimilation rate (A) of two elite rice (Oryza sativa) cultivars and 76 inbred lines across the whole growing season. The integrated A value after heading was positively associated with crop growth rate (CGR) from heading to harvest, but that before heading was not. A curve-smoothing analysis of A after heading showed that accumulated A at > 80% of its maximum (A80) was positively correlated with CGR in analyses of all lines mixed and of lines grouped by genetic background, while the maximum A and accumulated A at ≤ 80% were less strongly correlated with CGR. We also found a genomic region (~ 12.2 Mb) that may enhance both A80 and aboveground biomass at harvest. We propose that maintaining a high A after heading, rather than having high maximum A, is a potential target for enhancing rice biomass accumulation.


Assuntos
Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Biomassa , Produção Agrícola , Genoma de Planta , Oryza/genética , Fotossíntese , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Estações do Ano , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa