Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 10(41): 35477-35486, 2018 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-30107132

RESUMO

Selenium (Se) is one of the potential candidates as photodetector because of its outstanding properties such as high photoconductivity (∼8 × 104 S cm-1), piezoelectricity, thermoelectricity, and nonlinear optical responses. Solution phase synthesis becomes an efficient way to produce Se, but a contamination issue that could deteriorate the electric characteristic of Se should be taken into account. In this work, a facile, controllable approach of synthesizing Se nanowires (NWs)/films via a plasma-assisted growth process was demonstrated at the low substrate temperature of 100 °C. The detailed formation mechanisms of nanowires arrays to thin films at different plasma powers were investigated. Moreover, indium (In) layer was used to enhance the adhesive strength with 50% improvement on a SiO2/Si substrate by mechanical interlocking and surface alloying between Se and In layers, indicating great tolerance for mechanical stress for future wearable devices applications. Furthermore, the direct growth of Se NWs/films on a poly(ethylene terephthalate) substrate was demonstrated, exhibiting a visible to broad infrared detection ranges from 405 to 1555 nm with a high on/off ratio of ∼700 as well as the fast response time less than 25 ms. In addition, the devices exhibited fascinating stability in the atmosphere over one month.

2.
ACS Appl Mater Interfaces ; 9(10): 8623-8633, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-28195454

RESUMO

Crystal morphology and structure are important for improving the organic-inorganic lead halide perovskite semiconductor property in optoelectronic, electronic, and photovoltaic devices. In particular, crystal growth and dissolution are two major phenomena in determining the morphology of methylammonium lead iodide perovskite in the sequential deposition method for fabricating a perovskite solar cell. In this report, the effect of immersion time in the second step, i.e., methlyammonium iodide immersion in the morphological, structural, optical, and photovoltaic evolution, is extensively investigated. Supported by experimental evidence, a five-staged, time-dependent evolution of the morphology of methylammonium lead iodide perovskite crystals is established and is well connected to the photovoltaic performance. This result is beneficial for engineering optimal time for methylammonium iodide immersion and converging the solar cell performance in the sequential deposition route. Meanwhile, our result suggests that large, well-faceted methylammonium lead iodide perovskite single crystal may be incubated by solution process. This offers a low cost route for synthesizing perovskite single crystal.

3.
Sci Rep ; 5: 16098, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26526771

RESUMO

In this study, the electrodeposition (ED) of ultrathin, compact TiO2 blocking layers (BLs) on fluorine-doped tin oxide (FTO) glass for perovskite solar cells (PSCs) is evaluated. This bottom-up method allows for controlling the morphology and thickness of TiO2 films by simply manipulating deposition conditions. Compared with BLs produced using the spin-coating (SC) method, BLs produced using ED exhibit satisfactory surface coverage, even with a film thickness of 29 nm. Evidence from cyclic voltammetry shows that an ED BL suppresses interfacial recombination more profoundly than an SC BL does, consequently improving the photovoltaic properties of the PSC significantly. A PSC equipped with an ED TiO2 BL having a 13.6% power conversion efficiency is demonstrated.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa