Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Mol Genet Genomics ; 294(6): 1403-1420, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31222475

RESUMO

Flowering is a key agronomic trait that directly influences crop yield and quality and serves as a model system for elucidating the molecular basis that controls successful reproduction, adaptation, and diversification of flowering plants. Adequate knowledge of continuous series of expression data from the floral transition to maturation is lacking in Brassica rapa. To unravel the genome expression associated with the development of early small floral buds (< 2 mm; FB2), early large floral buds (2-4 mm; FB4), stamens (STs) and carpels (CPs), transcriptome profiling was carried out with a Br300K oligo microarray. The results showed that at least 6848 known nonredundant genes (30% of the genes of the Br300K) were differentially expressed during the floral transition from vegetative tissues to maturation. Functional annotation of the differentially expressed genes (DEGs) (fold change ≥ 5) by comparison with a close relative, Arabidopsis thaliana, revealed 6552 unigenes (4579 upregulated; 1973 downregulated), including 131 Brassica-specific and 116 functionally known floral Arabidopsis homologs. Additionally, 1723, 236 and 232 DEGs were preferentially expressed in the tissues of STs, FB2, and CPs. These DEGs also included 43 transcription factors, mainly AP2/ERF-ERF, NAC, MADS-MIKC, C2H2, bHLH, and WRKY members. The differential gene expression during flower development induced dramatic changes in activities related to metabolic processes (23.7%), cellular (22.7%) processes, responses to the stimuli (7.5%) and reproduction (1%). A relatively large number of DEGs were observed in STs and were overrepresented by photosynthesis-related activities. Subsequent analysis via semiquantitative RT-PCR, histological analysis performed with in situ hybridization of BrLTP1 and transgenic reporter lines (BrLTP promoter::GUS) of B. rapa ssp. pekinensis supported the spatiotemporal expression patterns. Together, these results suggest that a temporally and spatially regulated process of the selective expression of distinct fractions of the same genome leads to the development of floral organs. Interestingly, most of the differentially expressed floral transcripts were located on chromosomes 3 and 9. This study generated a genome expression atlas of the early floral transition to maturation that represented the flowering regulatory elements of Brassica rapa.


Assuntos
Brassica rapa/genética , Flores/genética , Transcriptoma , Brassica rapa/classificação , Brassica rapa/crescimento & desenvolvimento , Brassica rapa/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Flores/crescimento & desenvolvimento , Flores/metabolismo , Genoma de Planta , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo
2.
Asian-Australas J Anim Sci ; 32(12): 1836-1843, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31480141

RESUMO

OBJECTIVE: Social genetic effects (SGE) are an important genetic component for growth, group productivity, and welfare in pigs. The present study was conducted to evaluate i) the feasibility of the single-step genomic best linear unbiased prediction (ssGBLUP) approach with the inclusion of SGE in the model in pigs, and ii) the changes in the contribution of heritable SGE to the phenotypic variance with different scaling ω constants for genomic relationships. METHODS: The dataset included performance tested growth rate records (average daily gain) from 13,166 and 21,762 pigs Landrace (LR) and Yorkshire (YS), respectively. A total of 1,041 (LR) and 964 (YS) pigs were genotyped using the Illumina PorcineSNP60 v2 BeadChip panel. With the BLUPF90 software package, genetic parameters were estimated using a modified animal model for competitive traits. Giving a fixed weight to pedigree relationships (τ: 1), several weights (ωxx, 0.1 to 1.0; with a 0.1 interval) were scaled with the genomic relationship for best model fit with Akaike information criterion (AIC). RESULTS: The genetic variances and total heritability estimates (T2) were mostly higher with ssGBLUP than in the pedigree-based analysis. The model AIC value increased with any level of ω other than 0.6 and 0.5 in LR and YS, respectively, indicating the worse fit of those models. The theoretical accuracies of direct and social breeding value were increased by decreasing ω in both breeds, indicating the better accuracy of ω0.1 models. Therefore, the optimal values of ω to minimize AIC and to increase theoretical accuracy were 0.6 in LR and 0.5 in YS. CONCLUSION: In conclusion, single-step ssGBLUP model fitting SGE showed significant improvement in accuracy compared with the pedigree-based analysis method; therefore, it could be implemented in a pig population for genomic selection based on SGE, especially in South Korean populations, with appropriate further adjustment of tuning parameters for relationship matrices.

3.
Asian-Australas J Anim Sci ; 32(8): 1077-1083, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30744338

RESUMO

OBJECTIVE: Sow longevity is important for efficient and profitable pig farming. Recently, there has been an increasing interest in social genetic effect (SGE) of pigs on stress-tolerance and behavior. The present study aimed to estimate genetic correlations among average daily gain (ADG), stayability (STAY), and number of piglets born alive at the first parity (NBA1) in Korean Yorkshire pigs, using a model including SGE. METHODS: The phenotypic records of ADG and reproductive traits of 33,120 and 11,654 pigs, respectively, were evaluated. The variances and (co) variances of the studied traits were estimated by a multi-trait animal model applying the Bayesian with linear-threshold models using Gibbs sampling. RESULTS: The direct and SGEs on ADG had a significantly negative (-0.30) and neutral (0.04) genetic relationship with STAY, respectively. In addition, the genetic correlation between the social effects on ADG and NBA1 tended to be positive (0.27), unlike the direct effects (-0.04). The genetic correlation of the total effect on ADG with that of STAY was negative (-0.23) but non-significant, owing to the social effect. CONCLUSION: These results suggested that total genetic effect on growth in the SGE model might reduce the negative effect on sow longevity because of the growth potential of pigs. We recommend including social effects as selection criteria in breeding programs to obtain satisfactory genetic changes in both growth and longevity.

4.
Asian-Australas J Anim Sci ; 31(6): 784-790, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29268591

RESUMO

OBJECTIVE: The genetic effects of an individual on the phenotypes of its social partners, such as its pen mates, are known as social genetic effects. This study aims to identify the candidate genes for social (pen-mates') average daily gain (ADG) in pigs by using the genome-wide association approach. METHODS: Social ADG (sADG) was the average ADG of unrelated pen-mates (strangers). We used the phenotype data (16,802 records) after correcting for batch (week), sex, pen, number of strangers (1 to 7 pigs) in the pen, full-sib rate (0% to 80%) within pen, and age at the end of the test. A total of 1,041 pigs from Landrace breeds were genotyped using the Illumina PorcineSNP60 v2 BeadChip panel, which comprised 61,565 single nucleotide polymorphism (SNP) markers. After quality control, 909 individuals and 39,837 markers remained for sADG in genome-wide association study. RESULTS: We detected five new SNPs, all on chromosome 6, which have not been associated with social ADG or other growth traits to date. One SNP was inside the prostaglandin F2α receptor (PTGFR) gene, another SNP was located 22 kb upstream of gene interferon-induced protein 44 (IFI44), and the last three SNPs were between 161 kb and 191 kb upstream of the EGF latrophilin and seven transmembrane domain-containing protein 1 (ELTD1) gene. PTGFR, IFI44, and ELTD1 were never associated with social interaction and social genetic effects in any of the previous studies. CONCLUSION: The identification of several genomic regions, and candidate genes associated with social genetic effects reported here, could contribute to a better understanding of the genetic basis of interaction traits for ADG. In conclusion, we suggest that the PTGFR, IFI44, and ELTD1 may be used as a molecular marker for sADG, although their functional effect was not defined yet. Thus, it will be of interest to execute association studies in those genes.

5.
Asian-Australas J Anim Sci ; 30(6): 902-906, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28002938

RESUMO

OBJECTIVE: This study was conducted to characterize the behaviors and the body weight of suckling piglets in different social environments. METHODS: Two groups of sows and suckling piglets housed either in individual farrowing crates in separate pens (1.8×2.4 m, the control group) or in groups of three sows with their piglets in farrowing crates in a large common enclosure (5.4×2.2 m, the treatment group) were observed with the aid of video technology for 9 consecutive hours on days 1, 2, and 3, after mixing. RESULTS: Suckling, agonistic, and elimination behaviors of suckling piglets were significantly higher in the control group than in the treatment group. Inactive behavior was higher in the treatment group than in the control group. Most of the effects of the social environment on the suckling piglets seem to be the result of large reductions in behaviors and body weight for piglets switching from high activity to low activity. Moreover, suckling behavior and birth body weight were highly correlated with body weight at the end of the test. CONCLUSION: The social environment that resulted from mixing, thus, had significant effects on the behavior and body weight of suckling piglets, and behavioral characteristics, therefore, should be considered when making improvements to the husbandry and care methods used in swine production.

6.
Plant Cell Rep ; 35(9): 1943-54, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27295265

RESUMO

KEY MESSAGE: Here we report the enhancement of tolerance to salt stress in Brassica rapa (Chinese cabbage) through the RNAi-mediated reduction of GIGANTEA ( GI ) expression. Circadian clocks integrate environmental signals with internal cues to coordinate diverse physiological outputs. The GIGANTEA (GI) gene was first discovered due to its important contribution to photoperiodic flowering and has since been shown to be a critical component of the plant circadian clock and to contribute to multiple environmental stress responses. We show that the GI gene in Brassica rapa (BrGI) is similar to Arabidopsis GI in terms of both expression pattern and function. BrGI functionally rescued the late-flowering phenotype of the Arabidopsis gi-201 loss-of-function mutant. RNAi-mediated suppression of GI expression in Arabidopsis Col-0 and in the Chinese cabbage, B. rapa DH03, increased tolerance to salt stress. Our results demonstrate that the molecular functions of GI described in Arabidopsis are conserved in B. rapa and suggest that manipulation of gene expression through RNAi and transgenic overexpression could enhance tolerance to abiotic stresses and thus improve agricultural crop production.


Assuntos
Brassica rapa/genética , Brassica rapa/fisiologia , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Tolerância ao Sal/genética , Arabidopsis/genética , Brassica rapa/efeitos da radiação , Relógios Circadianos/genética , Relógios Circadianos/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Técnicas de Silenciamento de Genes , Genes de Plantas , Hidroponia , Luz , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Interferência de RNA , Tolerância ao Sal/efeitos dos fármacos , Tolerância ao Sal/efeitos da radiação , Cloreto de Sódio/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética
7.
Asian-Australas J Anim Sci ; 29(7): 1060-4, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26954152

RESUMO

With regard to animal welfare concerns, behavioral information of weaned and mixed piglets is great interest in swine production. The aim of this study was to demonstrate the change in behavior of weaned piglets over time in two different groups (littermates and piglets from different litters) after mixing. Two weaned groups of piglets (72 individuals in all) housed either with littermates or with foreign piglets (6 individuals in 1.8 m×1.4 m pens, 28°C±1°C temperature) were observed with the aid of video technology for 9 consecutive hours on days 1, 2, and 3 after mixing. The behaviors of the weaned piglets in the control and treatment groups were significantly different among the days after mixing. Piglets were, however, more active and aggressive in the groups with foreign piglets. This study reveals a lower level of agonistic behavior in groups of piglets that came from the same litter.

8.
Mol Genet Genomics ; 290(2): 521-30, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25325993

RESUMO

Chinese cabbage (Brassica rapa subsp. pekinensis) is an economically important vegetable that has encountered four rounds of polyploidization. The fourth event, whole genome triplication (WGT), occurred after its divergence from Arabidopsis. Expansins (EXPs) are cell wall loosening proteins that participate in cell wall modification processes. In this study, the impacts of WGT on the B. rapa expansin (BrEXP) superfamily were evaluated. Whole genome screening of B. rapa identified 32 loci coding 53 expansin genes. Fifteen of the loci maintained a single gene copy, 15 maintained two gene copies and 2 maintained three gene copies. Six loci had no synteny to any Arabidopsis thaliana orthologs. Two loci were involved in tandem duplication. Segmental duplication and fragment recombination were dominant in accelerating BrEXP evolution. Three genes (BrEXPA7, BrEXLA1 and BrEXLA2) lost one of their ancestral introns, two genes (BrEXPA18 and BrEXPB6) gained new introns, and a domain tandem repeat (BrEXPA18) and domain recombination (Bra016981; not considered as expansin) were observed in one gene each. Further, domain deletion was observed in an additional five genes (Bra033068, Bra000142, Bra025800, Bra016473 and Bra004891, not considered as expansins) that lost one of their expansin-specific domains evolutionarily. These findings provide a basis for the evolution and modification of the BrEXP superfamily after a WGT event, which will help in determining the functional characteristics of BrEXPs.


Assuntos
Brassica rapa/genética , Genoma de Planta , Proteínas de Plantas/genética , Mapeamento Cromossômico , Evolução Molecular , Duplicação Gênica , Filogenia , Ploidias , Sintenia
9.
Asian-Australas J Anim Sci ; 28(7): 1038-43, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26104410

RESUMO

In this study, we investigated the effects of mixing on the aggressive behavior of commercially housed pigs. The behavioral patterns of 36 groups of pigs (a total of 360 animals) were observed over 3 consecutive days directly after weaning (25±1.2 days of age), and 25 and 50 days later with the aid of video technology. Fight latency and total duration and frequency of fighting were significantly different among the age groups. The aggressive behaviors decreased in 75-day old pigs if compared to 25- and 50-day old animals. Moreover, dominance index (DI) was higher in 25-day old and lower in 75-day old pigs. A comparison of dominant (DI>0) and submissive (DI<0) pigs showed significant differences (p<0.05) for major aggressive behaviors in all age groups. Dominant pigs were involved in more aggressive interactions, had longer fights, and initiated more fights than submissive pigs. Post-mixing aggressive behavior was altered by previous experience of mixing. Aggressive behavior and DI are suitable methods for analyzing the effects of mixing on commercially housed growing pigs.

10.
Plant Cell Rep ; 33(8): 1239-54, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24737413

RESUMO

KEY MESSAGE: DREB2C acts as a transcriptional activator of the salt tolerance-related COLD - REGULATED 15A gene. DEHYDRATION-RESPONSIVE ELEMENT BINDING FACTOR 2C (DREB2C) regulates plant responses to heat stress. We report here that DREB2C is induced by NaCl stress in Arabidopsis, based on quantitative RT-PCR analyses of transcript levels and DREB2C promoter-controlled GUS activity assays. Constitutive overexpression of DREB2C from the cauliflower mosaic virus (CaMV) 35S promoter led to enhanced salt tolerance in transgenic Arabidopsis and canola plants that was characterized by higher chlorophyll content, lower tissue Na(+) content, reduced rate of water loss, and tighter membrane integrity in plants grown in NaCl-containing medium. Basal expression of the stress-responsive genes COLD-REGULATED 15A (COR15A), RESPONSIVE TO DEHYDRATION (RD) 29A and RD29B, was higher in transgenic DREB2C-overexpressing Arabidopsis plants than in the wild-type. Promoter transactivation assays and electrophoretic mobility-shift assays showed that DREB2C interacts directly with the three DREs in the COR15A promoter, both in vivo and in vitro. Transgenic Arabidopsis constitutively overexpressing COR15A from the CaMV35S promoter exhibited greater NaCl tolerance than the untransformed wild-type. Taken together, the data suggest that DREB2C functions as transcriptional activator that promotes NaCl tolerance, in part through upregulation of the stress-responsive gene COR15A.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Brassica napus/fisiologia , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , Cloreto de Sódio/farmacologia , Proteínas de Arabidopsis/metabolismo , Brassica napus/efeitos dos fármacos , Brassica napus/genética , Clorofila/metabolismo , Proteínas e Peptídeos de Choque Frio/genética , Proteínas e Peptídeos de Choque Frio/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Expressão Gênica , Genes Reporter , Folhas de Planta/genética , Folhas de Planta/fisiologia , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Ligação Proteica , RNA de Plantas/genética , Estresse Fisiológico , Água/análise
11.
Anim Biosci ; 37(4): 622-630, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38228129

RESUMO

OBJECTIVE: Pig breeders cannot obtain phenotypic information at the time of selection for sow lifetime productivity (SLP). They would benefit from obtaining genetic information of candidate sows. Genomic data interpreted using deep learning (DL) techniques could contribute to the genetic improvement of SLP to maximize farm profitability because DL models capture nonlinear genetic effects such as dominance and epistasis more efficiently than conventional genomic prediction methods based on linear models. This study aimed to investigate the usefulness of DL for the genomic prediction of two SLP-related traits; lifetime number of litters (LNL) and lifetime pig production (LPP). METHODS: Two bivariate DL models, convolutional neural network (CNN) and local convolutional neural network (LCNN), were compared with conventional bivariate linear models (i.e., genomic best linear unbiased prediction, Bayesian ridge regression, Bayes A, and Bayes B). Phenotype and pedigree data were collected from 40,011 sows that had husbandry records. Among these, 3,652 pigs were genotyped using the PorcineSNP60K BeadChip. RESULTS: The best predictive correlation for LNL was obtained with CNN (0.28), followed by LCNN (0.26) and conventional linear models (approximately 0.21). For LPP, the best predictive correlation was also obtained with CNN (0.29), followed by LCNN (0.27) and conventional linear models (approximately 0.25). A similar trend was observed with the mean squared error of prediction for the SLP traits. CONCLUSION: This study provides an example of a CNN that can outperform against the linear model-based genomic prediction approaches when the nonlinear interaction components are important because LNL and LPP exhibited strong epistatic interaction components. Additionally, our results suggest that applying bivariate DL models could also contribute to the prediction accuracy by utilizing the genetic correlation between LNL and LPP.

12.
World Neurosurg ; 171: e554-e559, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36563851

RESUMO

OBJECTIVE: Training surgeons in pedicle screw fixation (PSF) techniques during actual surgery is limited because of patient safety, complications, and surgical efficiency issues. Recent technical developments are leading the world to an era of personalized three-dimensional (3D) printing. This study aimed to evaluate the educational effect of using a 3D-printed spine model to train beginners in PSF techniques to improve screw accuracy and procedure time. METHODS: Computed tomography (CT) scan data were used in a 3D printer to produce a life-size lumbar spine replica of L1-3 vertebrae. Four residents performed PSF thrice. Each resident performed 18 screw fixations on both sides (6 screws per trial). The time to complete the procedure and pedicle violation was recorded. RESULTS: The average time for the 3 procedures was 42.1±2.9 minutes, 38.8±3.3 minutes, and 32.1±2.5 minutes, respectively. Furthermore, the average pedicle screw score for the 3 procedures was 13.0±0.8, 14.5±0.6, and 16.0±0.8, respectively. As the trial was repeated, the procedure time decreased and the accuracy of screw fixation tended to be more accurate. CONCLUSIONS: It was possible to decrease the procedure time and increase accuracy through repeated training using the 3D-printed spine model. By implementing a 3Dprinted spine model based on the patient's actual CT data, surgeons can perform simulation surgery before the actual surgery. Therefore, this technology can be useful in educating residents to improve their surgical skills.


Assuntos
Parafusos Pediculares , Fusão Vertebral , Cirurgia Assistida por Computador , Humanos , Cirurgia Assistida por Computador/métodos , Vértebras Lombares/cirurgia , Tomografia Computadorizada por Raios X/métodos , Simulação por Computador , Impressão Tridimensional , Fusão Vertebral/métodos
13.
Mol Genet Genomics ; 287(5): 373-88, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22466714

RESUMO

Circadian clocks regulate plant growth and development in response to environmental factors. In this function, clocks influence the adaptation of species to changes in location or climate. Circadian-clock genes have been subject of intense study in models such as Arabidopsis thaliana but the results may not necessarily reflect clock functions in species with polyploid genomes, such as Brassica species, that include multiple copies of clock-related genes. The triplicate genome of Brassica rapa retains high sequence-level co-linearity with Arabidopsis genomes. In B. rapa we had previously identified five orthologs of the five known Arabidopsis pseudo-response regulator (PRR) genes that are key regulators of the circadian clock in this species. Three of these B. rapa genes, BrPRR1, BrPPR5, and BrPPR7, are present in two copies each in the B. rapa genome, for a total of eight B. rapa PRR (BrPRR) orthologs. We have now determined sequences and expression characteristics of the eight BrPRR genes and mapped their positions in the B. rapa genome. Although both members of each paralogous pair exhibited the same expression pattern, some variation in their gene structures was apparent. The BrPRR genes are tightly linked to several flowering genes. The knowledge about genome location, copy number variation and structural diversity of these B. rapa clock genes will improve our understanding of clock-related functions in this important crop. This will facilitate the development of Brassica crops for optimal growth in new environments and under changing conditions.


Assuntos
Brassica rapa/genética , Genes de Plantas , Sequência de Aminoácidos , Arabidopsis/genética , Brassica rapa/crescimento & desenvolvimento , Brassica rapa/fisiologia , Mapeamento Cromossômico , Cromossomos Artificiais Bacterianos/genética , Cromossomos de Plantas/genética , Ritmo Circadiano/genética , DNA de Plantas/genética , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Genes Reguladores , Genoma de Planta , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/genética , Poliploidia , Locos de Características Quantitativas , Homologia de Sequência de Aminoácidos
14.
Biotechnol Lett ; 34(8): 1561-9, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22798043

RESUMO

S HI-R ELATED SEQUENCE (SRS) genes are plant-specific transcription factors containing a zinc-binding RING finger motif, which play a critical role in plant growth and development. We have characterized six SRS genes in Brassica rapa. Overexpression of the SRSs BrSTY1, BrSRS7, and BrLRP1 induced dwarf and compact plants, and significantly decreased primary root elongation and lateral root formation. Additionally, the transgenic plants had upward-curled leaves of narrow widths and with short petioles, and had shorter siliques and low fertility. In stems, hypocotyls, and styles, epidermal cell lengths were also significantly reduced in transgenic plants. RT-PCR analysis of transgenic plants revealed that BrSTY1, BrSRS7, and BrLRP1 regulate expression of several gibberellin (GA)- and auxin-related genes involved in morphogenesis in shoot apical regions. We conclude that BrSTY1, BrSRS7, and BrLRP1 regulate plant growth and development by regulating expression of GA- and auxin-related genes.


Assuntos
Arabidopsis/genética , Brassica rapa/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Giberelinas/genética , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo , Fenótipo , Epiderme Vegetal/metabolismo , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Caules de Planta/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Fatores de Transcrição/metabolismo
15.
Animals (Basel) ; 12(17)2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36078021

RESUMO

Average daily gain (ADG) is an important growth trait in the pig industry. The direct genetic effect (DGE) has been studied mainly to assess the association between genetic information and economic traits. The social genetic effect (SGE) has been shown to affect ADG simultaneously with the DGE because of group housing systems. We conducted this study to elucidate the genetic characteristics and relationships of the DGE and SGE of purebred Korean Duroc and crossbred pigs by single-step genomic best linear unbiased prediction and a genome-wide association study. We used the genotype, phenotype, and pedigree data of 1779, 6022, and 7904 animals, respectively. Total heritabilities on ADG were 0.19 ± 0.04 and 0.39 ± 0.08 for purebred and crossbred pigs, respectively. The genetic correlation was the greatest (0.77 ± 0.12) between the SGE of purebred and DGE of crossbred pigs. We found candidate genes located in the quantitative trait loci (QTLs) for the SGE that were associated with behavior and neurodegenerative diseases, and candidate genes in the QTLs for DGE that were related to body mass, size of muscle fiber, and muscle hypertrophy. These results suggest that the genomic selection of purebred animals could be applied for crossbred performance.

16.
Front Genet ; 13: 779152, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35186025

RESUMO

A Korean synthetic pig breed, Woori-Heukdon (WRH; F3), was developed by crossing parental breeds (Korean native pig [KNP] and Korean Duroc [DUC]) with their crossbred populations (F1 and F2). This study in genome-wide assessed a total of 2,074 pigs which include the crossbred and the parental populations using the Illumina PorcineSNP60 BeadChip. After quality control of the initial datasets, we performed population structure, genetic diversity, and runs of homozygosity (ROH) analyses. Population structure analyses showed that crossbred populations were genetically influenced by the parental breeds according to their generation stage in the crossbreeding scheme. Moreover, principal component analysis showed the dispersed cluster of WRH, which might reflect introducing a new breeding group into the previous one. Expected heterozygosity values, which were used to assess genetic diversity, were .365, .349, .336, .330, and .211 for WRH, F2, F1, DUC, and KNP, respectively. The inbreeding coefficient based on ROH was the highest in KNP (.409), followed by WRH (.186), DUC (.178), F2 (.107), and F1 (.035). Moreover, the frequency of short ROH decreased according to the crossing stage (from F1 to WRH). Alternatively, the frequency of medium and long ROH increased, which indicated recent inbreeding in F2 and WRH. Furthermore, gene annotation of the ROH islands in WRH that might be inherited from their parental breeds revealed several interesting candidate genes that may be associated with adaptation, meat quality, production, and reproduction traits in pigs.

17.
Anim Biosci ; 34(6): 967-974, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32898957

RESUMO

OBJECTIVE: The objective of this study was to estimate the genetic correlation (rpc) of growth performance between purebred (Duroc and Korean native) and synthetic (WooriHeukDon) pigs using a single-step method. METHODS: Phenotypes of 15,902 pigs with genotyped data from 1,792 pigs from a nucleus farm were used for this study. We estimated the rpc of several performance traits between WooriHeukDon and purebred pigs: day of target weight (DAY), backfat thickness (BF), feed conversion rate (FCR), and residual feed intake (RFI). The variances and covariances of the studied traits were estimated by an animal multi-trait model that applied the Bayesian inference. RESULTS: rpc within traits was lower than 0.1 for DAY and BF, but high for FCR and RFI; in particular, rpc for RFI between Duroc and WooriHeukDon pigs was nearly 1. Comparison between different traits revealed that RFI in Duroc pigs was associated with different traits in WooriHeukDon pigs. However, the most of rpc between different traits were estimated with low or with high standard deviation. CONCLUSION: The results indicated that there were substantial differences in rpc of traits in the synthetic WooriHeukDon pigs, which could be caused by these pigs having a more complex origin than other crossbred pigs. RFI was strongly correlated between Duroc and WooriHeukDon pigs, and these breeds might have similar single nucleotide polymorphism effects that control RFI. RFI is more essential for metabolism than other growth traits and these metabolic characteristics in purebred pigs, such as nutrient utilization, could significantly affect those in synthetic pigs. The findings of this study can be used to elucidate the genetic architecture of crossbred pigs and help develop new breeds with target traits.

18.
J Anim Sci Technol ; 63(5): 977-983, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34796341

RESUMO

Closely correlated expression patterns between ubiquitin specific peptidase 9X-linked (USP9X) and adherens junction formation factor (Afadin) in mouse testis development suggests that Usp9x regulates the deubiquitination of Af-6 (also known as Afadin, AFDN), and subsequently, the cell adhesion dynamics during gametogenesis. However, this relationship has not yet been tested in other domestic animals. The study was examined the temporal and spatial expression patterns of porcine USP9X and AFDN from the pre-pubertal to adult stages using real time-PCR and immunohistochemistry. Furthermore, we detected the transcripts of USP9X and AFDN in the testis of 1-, 6- and 12-months old boar, respectively. USP9X and AFDN were found to have similar expressions patterns, with basal expression after 1 month followed by a significant up-regulation from 6 months (puberty) onwards. In addition, neither the AFDN or USP9X proteins were detected in spermatogenic cells but they were expressed in the leydig cells and sertoli cells. USP9X was detected around the basal lamina during pre-puberty, and predominantly expressed in the leydig cells at puberty. Finally, in adult testis, USP9X was increased at the sertoli cell-cell interface and the sertoli cell-spermatid interface. In summary, closely correlated expression patterns between USP9X and AFDN in boar testis supports the previous findings in mice. Furthermore, the junction connections between the sertoli cells may be regulated by the ubiquitination process mediated via USP9X.

19.
Plant Cell Rep ; 29(8): 905-15, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20526604

RESUMO

The phytocystatins of plants are members of the cystatin superfamily of proteins, which are potent inhibitors of cysteine proteases. The Arabidopsis genome encodes seven phytocystatin isoforms (AtCYSs) in two distantly related AtCYS gene clusters. We selected AtCYS1 and AtCYS2 as representatives for each cluster and then generated transgenic plants expressing the GUS reporter gene under the control of each gene promoter. These plants were used to examine AtCYS expression at various stages of plant development and in response to abiotic stresses. Histochemical analysis of AtCYS1 promoter- and AtCYS2 promoter-GUS transgenic plants revealed that these genes have similar but distinct spatial and temporal expression patterns during normal development. In particular, AtCYS1 was preferentially expressed in the vascular tissue of all organs, whereas AtCYS2 was expressed in trichomes and guard cells in young leaves, caps of roots, and in connecting regions of the immature anthers and filaments and the style and stigma in flowers. In addition, each AtCYS gene has a unique expression profile during abiotic stresses. High temperature and wounding stress enhanced the expression of both AtCYS1 and AtCYS2, but the temporal and spatial patterns of induction differed. From these data, we propose that these two AtCYS genes play important, but distinct, roles in plant development and stress responses.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Cistatinas/metabolismo , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Sequência de Bases , Cistatinas/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Temperatura Alta , Dados de Sequência Molecular , Família Multigênica , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Regiões Promotoras Genéticas , RNA de Plantas/genética , Estresse Fisiológico
20.
Materials (Basel) ; 13(24)2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33339320

RESUMO

Cobalt-chromium (Co-Cr) metal is one of the widely used biomaterials in the fabrication of dental prosthesis. The purpose of this study was to investigate whether there are differences in the properties of metals and bond strength with ceramics depending on the manufacturing methods of Co-Cr alloy. Co-Cr alloy specimens were prepared in three different ways: casting, milling, and selective laser melting (SLM). The mechanical properties (elastic modulus, yield strength, and flexural strength) of the alloys were investigated by flexure method in three-point bending mode, and microstructures of the specimens were analyzed. After application of the veneering ceramic through the three-point bending test, bond strength of the Metal-Ceramic was investigated. The cracked surfaces were observed by means of energy dispersive X-ray (EDX) spectroscopy and scanning electron microscopy (SEM) with backscattered electron (BSE) images. In mechanical properties, the elastic modulus was highest for the casting group, and the yield strength and flexural strength were lowest for the milling group. The SLM group showed finer homogeneous crystalline-microstructure, and a layered structure was observed at the fractured surface. After the ceramic bond strength test, all groups showed a mixed failure pattern. The casting group showed the highest bond strengths, whereas there was no significant difference between the other two groups. However, all groups have met the standard of bond strength according to international standards organization (ISO) with the appropriate passing rate. The results of this study indicate that the SLM manufacturing method may have the potential to replace traditional techniques for fabricating dental prosthesis.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa