Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Biol ; 227(2)2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38149682

RESUMO

Elevation in water salinity can threaten the spermatogenesis and fertility of freshwater animals. The role of the renin-angiotensin system (RAS) in regulating spermatogenesis has attracted considerable attention. Our previous study found that red-eared sliders (Trachemys scripta elegans), could survive in 10 PSU water for over 1 year. To understand the chronic impact of salinity on testicular spermatogenesis and underlying mechanisms, male T. s. elegans were subjected to treatment with water of 5 PSU and 10 PSU for a year, and spermatogenesis and regulation of the RAS signal pathway was assessed. Results showed induced inflammation in the testes of T. s. elegans in the 10 PSU group, as evidenced by a decrease in the number of testicular germ cells from 1586 to 943. Compared with the control group, the levels of proinflammatory genes, including TNF-α, IL-12A and IL-6 were elevated 3.1, 0.3, and 1.4 times, respectively, in animals exposed to 10 PSU water. Testicular antiapoptotic processes of T. s. elegans might involve the vasoactive peptide angiotensin-(1-7) in the RAS, as its level was significantly increased from 220.2 ng ml-1 in controls to 419.2 ng ml-1 in the 10 PSU group. As expected, specific inhibitor (A-779) for the Ang-(1-7) acceptor effectively prevented the salinity-induced upregulation of genes encoding anti-inflammatory and antiapoptotic factors (TGF-ß1, Bcl-6) in the testis of the 10 PSU animals, whereas it promoted the upregulation of proinflammatory and proapoptotic factors (TNF-α, IL-12A, IL-6, Bax and caspase-3). Our data indicated that Ang-(1-7) attenuates the effect of salinity on inflammation and apoptosis of the testis in T. s. elegans. A new perspective to prevent salinity-induced testis dysfunction is provided.


Assuntos
Angiotensina I , Fragmentos de Peptídeos , Fator de Necrose Tumoral alfa , Tartarugas , Animais , Masculino , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6 , Estresse Salino , Tartarugas/metabolismo , Inflamação , Espermatogênese , Água/metabolismo
2.
Chem Biodivers ; : e202401420, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39287370

RESUMO

We designed and synthesized 27 new amide and dipeptide derivatives containing a substituted phenylalanine as negative allosteric modulators (NAMs) for the beta-2 adrenergic receptor (ß2AR). These analogs aimed to improve the activity of our lead compound, Cmpd-15, by introducing variations in three key regions: the meta-bromobenzyl methylbenzamide (S1), para-formamidophenylalanine (S2), and 1-cyclohexyl-1-phenylacetyl (S3) groups. The synthesis involved the Pd-catalyzed ß-C(sp3)-H arylation of N-acetylglycine with 1-iodo-4-substituent-benzenes as the key step. GloSensor cAMP accumulation assay revealed that six analogs (A1, C5, C6, C13, C15 and C17) surpass Cmpd-15 in ß2AR allosteric function. This highlights the crucial role of the S1 region (meta-bromobenzyl methylbenzamide) in ß2AR allostery while suggesting potential replaceability of the S2 region (para-formamidophenylalanine). These findings serve as a valuable springboard for further optimizing Cmpd-15, potentially leading to smaller, more active, and more stable ß2AR-targeting NAMs.

3.
Inorg Chem ; 62(41): 16782-16793, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37775280

RESUMO

In this work, we presented the first report on the high-pressure structural stability and electrical transport characteristics in WSSe under different hydrostatic environments through Raman spectroscopy, electrical conductivity, and high-resolution transmission electron microscopy (HRTEM) coupled with first-principles theoretical calculations. For nonhydrostatic conditions, WSSe endured a phase transition at 15.2 GPa, followed by a semiconductor-to-metal crossover at 25.3 GPa. Furthermore, the bandgap closure was accounted for the metallization of WSSe as derived from theoretical calculations. Under hydrostatic conditions, ∼ 2.0 GPa pressure hysteresis was detected for the emergence of phase transition and metallization in WSSe because of the feeble deviatoric stress. Upon depressurization, the reversibility of the phase transition was substantiated by those of microscopic HRTEM observations under different hydrostatic environments. Our high-pressure investigation on WSSe advances the insightful understanding of the crystalline structure and electronic properties for the Janus transition-metal dichalcogenide (TMD) family and boosts prospective developments in functional devices.

4.
Bioorg Chem ; 141: 106922, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37865056

RESUMO

The broad-spectrum antimicrobial ability of de novo designed amphiphilic antimicrobial peptides (AMPs) G(IIKK)3I-NH2 (G3) and C8-G(IIKK)2I-NH2 (C8G2) have been demonstrated. Nonetheless, their potential as anti-quorum-sensing (anti-QS) agents, particularly against the opportunistic pathogen Pseudomonas aeruginosa at subinhibitory concentrations, has received limited attention. In this study, we proved that treating P. aeruginosa PAO1 with both AMPs at subinhibitory concentrations led to significant inhibition of QS-regulated virulence factors, including pyocyanin, elastase, proteases, and bacterial motility. Additionally, the AMPs exhibited remarkable capabilities in suppressing biofilm formation and their elimination rate of mature biofilm exceeded 95%. Moreover, both AMPs substantially downregulated the expression of QS-related genes. CD analysis revealed that both AMPs induced structural alterations in the important QS-related protein LasR in vitro. Molecular docking results indicated that both peptides bind to the hydrophobic groove of the LasR dimer. Notably, upon mutating key binding sites (D5, E11, and F87) to Ala, the binding efficiency of LasR to both peptides significantly decreased. We revealed the potential of antibacterial peptides G3 and C8G2 at their sub-MIC concentrations as QS inhibitors against P. aeruginosa and elucidated their action mechanism. These findings contribute to our understanding of the therapeutic potential of these peptides in combating P. aeruginosa infections by targeting the QS system.


Assuntos
Peptídeos Antimicrobianos , Pseudomonas aeruginosa , Pseudomonas aeruginosa/fisiologia , Simulação de Acoplamento Molecular , Percepção de Quorum , Biofilmes , Antibacterianos/farmacologia , Antibacterianos/química , Proteínas de Bactérias/metabolismo
5.
Ecotoxicol Environ Saf ; 262: 115193, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37392661

RESUMO

Butylparaben (BuP) is regarded as a widespread pollutant, which has potential risk to aquatic organisms. Turtle species are an important part of aquatic ecosystems, however, the effect of BuP on aquatic turtles is not known. In this study, we evaluated the effect of BuP on intestinal homeostasis of Chinese striped-necked turtle (Mauremys sinensis). We exposed turtles to concentrations of BuP (0, 5, 50, and 500 µg/L) for 20 weeks, then investigated the composition of gut microbiota, the structure of intestine, and the inflammatory and immune status. We found BuP exposure significantly changed the composition of gut microbiota. Specially, the unique genus in three concentrations of BuP-treated groups mainly was Edwardsiella, which was not present in control group (0 µg/L of BuP). In addition, the height of intestinal villus was shortened, and the thickness of muscularis was thinned in BuP-exposed groups. Particularly, the number of goblet cells obviously decreased, the transcription of mucin2 and zonulae occluden-1 (ZO-1) significantly downregulated in BuP-exposed turtles. Meanwhile, neutrophils and natural killer cells in lamina propria of intestinal mucosa increased in BuP-treated groups, especially in high concentration of BuP (500 µg/L). Moreover, the mRNA expression of pro-inflammatory cytokines, especially IL-1ß showed a significant upregulation with BuP concentrations. Correlation analysis indicated the abundance of Edwardsiella was positively correlated with IL-1ß and IFN-γ expression, whereas its abundance was negatively correlative with the number of goblet cells. Taken together, the present study demonstrated BuP exposure disordered intestinal homeostasis through inducing dysbiosis of gut microbiota, causing inflammatory response and impairing gut physical barrier in turtles, which emphasized the hazard of BuP to health of aquatic organism.

6.
Inorg Chem ; 61(12): 4852-4864, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35289613

RESUMO

High-pressure structural, vibrational, and electrical transport properties of CrCl3 were investigated by means of Raman spectroscopy, electrical conductivity, and high-resolution transmission electron microscopy under different hydrostatic environments using the diamond anvil cell in conjunction with the first-principles theoretical calculations up to 50.0 GPa. The isostructural phase transition of CrCl3 occurred at 9.9 GPa under nonhydrostatic conditions. As pressure was increased up to 29.8 GPa, CrCl3 underwent an electronic topological transition accompanied by a metallization transformation due to the discontinuities in the Raman scattering and electrical conductivity, which is possibly belonging to a typical first-order metallization phase transition as deduced from first-principles theoretical calculations. As for the hydrostatic condition, a ∼2.0 GPa pressure delay in the occurrence of two corresponding transformations of CrCl3 was observed owing to the different deviatoric stress. Upon decompression, we found that the phase transformation from the metal to semiconductor in CrCl3 is of good reversibility, and the obvious pressure hysteresis effect is observed under different hydrostatic environments. All of the obtained results on the structural, vibrational, and electrical transport characterizations of CrCl3 under high pressure can provide a new insight into the high-pressure behaviors of representative chromium trihalides CrX3 (X = Br and I) under different hydrostatic environments.

7.
Ecotoxicol Environ Saf ; 222: 112471, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34229168

RESUMO

Ammonia is one of major pollutants in aquatic environment that induces severe stress and toxicity to organisms in aquatic system. The intestine acts a major defense line that protects living organisms from biotic and abiotic stresses. In the current study, we examined the effects of ammonia on intestinal histomorphology, transcriptional levels of intestinal barrier functioning genes and intestinal microbiota of Chinese striped-neck turtle (Mauremys sinensis). Thus, the turtles were placed in water with addition of ammonia at 0 (control), 100, 200 mg L-1 for 30 days. Our findings showed that ammonia reduced the villus length and induced the inflammatory cells appearance. In addition, the epithelial tight junction genes, claudin and zonola occludin significantly downregulated in ammonia exposed groups as compared to control group (P < 0.05). Similarly, the mRNA expression levels of MUC-2 gene also significantly decreased in ammonia treated groups (P < 0.05). However, the expression levels of intestinal immune related genes such as IL-10, IL-12, TGF-ß1, TNF-α and IFN-γ significantly increased (P < 0.05). Furthermore, ammonia changed gut microbial diversity variedly. At the phylum levels, Firmicutes increased, whereas Bacteroidota, Desulfobacterota and Synergistota decreased significantly. Likewise, Lachnospiraceae, Bacteroides, Eubacteriaceae, Desulfovibrio, Muribaculaceae, Bilophila, Cloacibacillus, Christensenellaceae, Ruminococcus and Parabacteroides decreased while, Romboutsia and Turicibacter increased in ammonia exposed groups. In conclusion, ammonia at 100 and 200 mg L-1 could alter the intestinal barrier function and change the composition of intestinal microbiota, leading to bad health status in M. sinensis.


Assuntos
Microbiota , Tartarugas , Amônia/toxicidade , Animais , China , Mucosa Intestinal
8.
Fish Shellfish Immunol ; 107(Pt A): 137-145, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33011437

RESUMO

Ammonia is toxic to most fish, and its negative effects can be eliminated by nutritional manipulation. In this study, triplicate groups of yellow catfish (0.58 ± 0.03 g) were fed diets supplemented with 0, 0.30 and 0.60 mg selenium (Se) kg-1 diet for 56 days under three ammonia contents (0.00, 5.70 and 11.40 mg L-1 total ammonia nitrogen). The results showed that ammonia toxicity could affects growth (weight gain, feed efficiency ratio, Se contents in muscle and whole body declined) and survival, leads to oxidative stress (total antioxidant capacity, superoxide dismutase, catalase and glutathione peroxidase activities declined and malondialdehyde accumulation), immunosuppression (lysozyme activity, 50% hemolytic complement, immunoglobulin M, respiratory burst and phagocytic index declined) and cytokines release (TNF, IL 1 and IL 8 elevated), induces up-regulation of antioxidant enzymes (Cu/Zn-SOD, Mn-SOD, CAT and GPx), cytokines (TNFα, IL 1 and IL 8) and pro-apoptotic genes (p53, Bax, Cytochrome c, Caspase 3 and Caspase 9) transcription, and down-regulation of anti-apoptotic gene Bcl2 transcription. The dietary Se supplementation could mitigate the adverse effect of ammonia poisoning on fish growth, oxidative damage, immunosuppression and apoptotic.


Assuntos
Amônia/toxicidade , Peixes-Gato/imunologia , Expressão Gênica/imunologia , Substâncias Protetoras/metabolismo , Selênio/metabolismo , Ração Animal/análise , Animais , Peixes-Gato/genética , Peixes-Gato/crescimento & desenvolvimento , Dieta/veterinária , Suplementos Nutricionais/análise , Relação Dose-Resposta a Droga , Substâncias Protetoras/administração & dosagem , Distribuição Aleatória , Selênio/administração & dosagem
9.
J Org Chem ; 80(3): 1849-55, 2015 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-25584396

RESUMO

An amphiphilic calix[4]resorcinarene bearing four hydrophilic sulfonate sites at the upper rim and four hydrophobic n-pentyl chains at the lower rim (SR4A5) was synthesized by sulfonation of tetramethoxyresorcinarene. The molecular binding behaviors of SR4A5 with different types of organic cations, i.e., singly and doubly charged aliphatic ammonium salts and singly and doubly charged π-aromatic ammonium salts, were comprehensively investigated by means of (1)H NMR, fluorescence, and UV/vis spectroscopic titration experiments. The competitive binding titrations demonstrate that, superior to the reported p-sulfonatocalix[4]arene systems, the stability constants upon association with SR4A5 can reach up to 10(6) M(-1) order of magnitude in water, ultimately leading to better binding affinity and molecular selectivity toward dicationic guests. Significantly, UV/vis spectroscopic experiments further revealed that the specific binding behaviors of SR4A5 with bispyridinium guests can be attributed to the charge transfer interaction between electron-rich and electron-deficient aromatics upon host-guest complexation. These obtained results provide an effective strategy to realize the highly selective molecular recognition process with multiply charged macrocyclic receptors and will definitely promote the development of the field of water-soluble resorcinarene-based supramolecular assemblies.

10.
J Am Chem Soc ; 136(47): 16461-4, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25383544

RESUMO

The cathode capacity of common lithium ion batteries (LIBs) using inorganic electrodes and liquid electrolytes must be further improved. Alternatively, all-solid-state lithium batteries comprising the electrode of organic compounds can offer much higher capacity. Herein, we successfully fabricated an all-solid-state lithium battery based on organic pillar[5]quinone (C35H20O10) cathode and composite polymer electrolyte (CPE). The poly(methacrylate) (PMA)/poly(ethylene glycol) (PEG)-LiClO4-3 wt % SiO2 CPE has an optimum ionic conductivity of 0.26 mS cm(-1) at room temperature. Furthermore, pillar[5]quinine cathode in all-solid-state battery rendered an average operation voltage of ∼2.6 V and a high initial capacity of 418 mAh g(-1) with a stable cyclability (94.7% capacity retention after 50 cycles at 0.2C rate) through the reversible redox reactions of enolate/quinonid carbonyl groups, showing favorable prospect for the device application with high capacity.

11.
Artigo em Inglês | MEDLINE | ID: mdl-38428623

RESUMO

The elevated salinity in freshwater causes a serious threat to the survival and reproduction of freshwater organisms. The effect of salinity on embryonic development of freshwater turtles is little known. In this study, we investigated the embryonic morphology and underlining mechanism of red-eared slider (Trachemys scripta elegans) in different salinities incubated environment (2.5 ppt and 5 ppt). Results showed that salinity caused various forms of malformed embryos, including brain hypoplasia, eye defects, skeletal dysplasia, deformities of carapace, plastron, limb in the embryo. Severely, salinity could lead to embryos decease. Transcriptome analysis showed that differentially expressed genes induced by salinity primarily enriched in development pathways, metabolism pathways, disease pathways as well as cell processes through KEGG enrichment analysis. In addition, in early and middle embryonic developmental stages, the mRNA expression of apoptotic genes (p38 and bax) significantly increased, whereas anti-apoptotic gene bcl-2 decreased in salinities incubated environment. These findings demonstrated that salinity inhibited the process of embryonic development and damaged organogenesis of turtles through promoting apoptotic pathways.


Assuntos
Tartarugas , Animais , Tartarugas/genética , Tartarugas/metabolismo , Estresse Salino , Perfilação da Expressão Gênica , Desenvolvimento Embrionário , Organogênese
12.
Animals (Basel) ; 14(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38998010

RESUMO

Freshwater acidification (FA) has become a global environmental problem, posing a potential threat to freshwater ecosystems. The gut microbiota plays a crucial role in the host's response and adaptation to new environments. In this study, we investigated the changes in microbial communities in Red-eared slider (Trachemys scripta elegans) under acidic conditions to reveal the ecological impacts of acidification on freshwater turtles. The results showed that there were significant differences in ß-diversity (p = 0.03), while there were no significant differences in the α-diversity of gut microbiota in T. s. elegans between the different levels of acidification (pH of 5.5, 6.5, 7.5). Both the Gut Microbiome Health Index (GMHI) and the Microbial Dysbiosis Index (MDI) exhibited significant differences when comparing environments with a pH of 5.5 to those with a pH of 6.5 (p < 0.01). A comparative analysis between pH levels of 5.5 and 6.5 also revealed substantial differences (p < 0.01). Likewise, a comparative analysis between pH levels of 6.5 and 7.5 also revealed substantial differences (p < 0.01). At the phylum level, Firmicutes, Fusobacteria, and Bacteroidota formed a major part of the gut microbial community, Fusobacteria showed significant differences in different acidity environments (p = 0.03). At the genus level, Cetobacterium, Turicibacter, unclassified Eubacteriaceae, and Anaerorhabdus_furcosa_group showed significant differences in different acidity environments. The pH reduced interactivity in the gut microbiota of T. s. elegans. In addition, LEfSe analysis and functional prediction revealed that the potentially_pathogenic and stress_tolerant functional characteristics also showed significant differences in different acidity environments. The findings underscore the pivotal role of the gut microbiota in T. s. elegans in response to freshwater acidification and provide a foundation for further exploration into the impacts of acidification on freshwater ecosystems.

13.
Artigo em Inglês | MEDLINE | ID: mdl-38296217

RESUMO

As one of main pollutants, ammonia could cause adverse effects to aquatic animals. To explore the toxic effects of ammonia on Chinese striped-necked turtles (Mauremys sinensis) and invasive species red-eared slider (Trachemys scripta elegans), we compared the activities of antioxidant enzymes, the mRNA levels of genes involved in immune status, endoplasmic reticulum stress and apoptosis between T. s. elegans and M. sinensis under ammonia exposure for 30 days. The results showed that ammonia obviously increased the activities of SOD, CAT, GPX and T-AOC in both T. s. elegans and M. sinensis, especially CAT and GPX in T. s. elegans were higher than that in M. sinensis. The expression levels of JAK, RELA and Mcl-1 in T. s. elegans obviously increased, while IL-6 mRNA levels significantly increased in M. sinensis. In addition, Bip and IRE1 levels in M. sinensis showed a marked increase, and were significantly higher than that in T. s. elegans. Bcl-2 and Bcl-xL transcriptional levels in T. s. elegans showed an increase, especially Bcl-xL were significantly higher than that in M. sinensis. These results indicated that T. s. elegans exhibited more stronger antioxidant defense and immune function than M. sinensis under ammonia exposure. M. sinensis was more likely to occur endoplasmic reticulum stress and inflammation in ammonia environment. This research reveals the physiological response of turtles to ammonia, helps to understand adverse effects of environmental pressure on aquatic turtles, and further explains the tolerance of invasive species T. s. elegans to environmental pollution.


Assuntos
Tartarugas , Animais , Amônia/toxicidade , Espécies Introduzidas , Antioxidantes , RNA Mensageiro
14.
Aquat Toxicol ; 268: 106841, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38320419

RESUMO

Butyl paraben (BuP) is widely used in cosmetics, drugs, and food preservation. Recently it is an identified new pollutant that affects various aspects of reproduction, lipid metabolism, and nervous system. Behavioral activity serves as a pre-warning biomarker for predicting water quality. So, in this study, the changes in some behaviors and its neurotransmitters and cell apoptosis in the brain of Chinese striped-necked turtles (Mauremys sinensis) were studied when the turtles were exposed to BuP concentrations of 0, 5, 50, 500, and 5000 µg/L for 21 weeks. The results showed that, the basking time and altering scores to external stimuli in the groups of 50, 500, and 5000 µg/L were significantly reduced, while the time for body-righting was significantly increased, compared with the control (0 µg/L), indicating that the turtles exhibited depression and inactive behavior. The analysis of neurotransmitter in the brain showed that 5-hydroxytryptamine (5-HT) contents in the groups of 500 and 5000 µg/L were significantly higher than the other groups, which was due to an increase in the mRNA relative expression levels of the 5-HT receptor gene (5-HTR), neurotransmitter transporter genes (Drd4, Slc6a4), and neurotransmitter synthase tryptophan hydroxylase (TPH). Furthermore, GABA transaminase (GABA-T) activity increased in the 500 and 5000 µg/L groups, and tyrosine hydroxylase (TH) activity increased dramatically in the 5000 µg/L group. However, acetyl-CoA (AChE) activity was significantly reduced in these four BuP exposure groups. These changes could be attributed to decreased movement velocity and increased inactivity. Meanwhile, the mRNA expression level of BAX, Bcl-2, caspase-9 and TUNEL assay indicated the occurrence of cell apoptosis in the brains of the higher BuP exposed groups, which may play an important role in neuronal death inducing behavior change. In summary, these findings offer fundamental insights into turtle ecotoxicology and serve as a foundation for a comprehensive assessment of the ecological and health risks associated with BuP.


Assuntos
Tartarugas , Poluentes Químicos da Água , Animais , Tartarugas/genética , Tartarugas/metabolismo , Parabenos/metabolismo , Poluentes Químicos da Água/toxicidade , RNA Mensageiro/metabolismo , Neurotransmissores/metabolismo , China
15.
Artigo em Inglês | MEDLINE | ID: mdl-38437998

RESUMO

Chinese soft-shelled turtle (Pelodiscus sinensis) hibernates without eating and drinking when the ambient temperature is very low. To better understand the characteristics of energy utilization during hibernation, the turtles in the physiological phases of summer active (SA), Pre-Hibernation (Pre-H), Mid-Hibernation (Mid-H) and early arousal (EA) were sampled. The results showed that the levels of serum triglyceride and hepatic lipid droplet were markedly increased in Pre-H and decreased in Mid-H compared with that in SA, indicating that P. sinensis experiences lipid accumulation in Pre-H and lipid is the predominant energy reserve during hibernation. The mRNA expression levels of genes (FABP and CPT-2) involved in lipolysis and lipid oxidation were up-regulated in Mid-H, while the genes related to lipid synthesis (FAS, ACSL-1, ACC, elovl5, and SCD1) were inhibited in Mid-H. Meanwhile, the mRNA expression levels of endoplasmic reticulum stress marker gene Bip and key genes (ATF4, ATF6, and IRE1α) involving the unfolded protein response were significantly increased in Mid-H and EA. Also, the expression levels of genes (ASK1, JNK1, and Bax) associated with cell apoptosis increased in Mid-H and EA, however, the expression of Bcl2 was inhibited in Mid-H. Therefore, hibernation can cause endoplasmic reticulum stress and apoptosis. The findings will provide a theoretical framework for an animal's cold adaptation and offer insights into preventing and managing metabolic syndrome.


Assuntos
Tartarugas , Animais , Tartarugas/metabolismo , Metabolismo dos Lipídeos , Estações do Ano , Endorribonucleases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro/metabolismo , Lipídeos
16.
Animals (Basel) ; 14(12)2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38929370

RESUMO

The intestine of living organisms harbors different microbiota associated with the biological functioning and health of the host and influences the process of ecological adaptation. Here, we studied the intestinal microbiota's composition and functional differences using 16S rRNA and metagenomic analysis in the wild, farm, and released Chinese three-keeled pond turtle (Mauremys reevesii). At the phylum level, Bacteroidota dominated, followed by Firmicutes, Fusobacteriota, and Actinobacteriota in the wild group, but Chloroflexi was more abundant in the farm and released groups. Moreover, Chryseobacterium, Acinetobacter, Comamonas, Sphingobacterium, and Rhodobacter were abundant in the released and farm cohorts, respectively. Cetobacterium, Paraclostridium, Lysobacter, and Leucobacter showed an abundance in the wild group. The Kyoto Encyclopedia of Genes and Genomes (KEGG) database revealed that the relative abundance of most pathways was significantly higher in the wild turtles (carbohydrate metabolism, lipid metabolism, metabolism of cofactors, and vitamins). The comprehensive antibiotic resistance database (CARD) showed that the antibiotic resistance gene (ARG) subtype macB was the most abundant in the farm turtle group, while tetA was higher in the wild turtles, and srpYmcr was higher in the released group. Our findings shed light on the association between the intestinal microbiota of M. reevesii and its habitats and could be useful for tracking habitats to protect and conserve this endangered species.

17.
Animals (Basel) ; 14(16)2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39199937

RESUMO

Hexavalent chromium (Cr(VI)), a pervasive industrial contaminant, is highly toxic to both humans and animals. However, its effects on turtles are largely unexplored. Our study aimed to investigate the toxic effects of Cr(VI) on the Reeves' turtles (Mauremys reevesii) primary hepatocytes. We exposed hepatocytes to two concentrations (25 µM and 50 µM) of Cr(VI) for 24 h. The results showed that compared to controls, Cr(VI)-treated cells showed elevated antioxidant enzyme activity (catalase (CAT) and superoxide dismutase (SOD)) and increased reactive oxygen species (ROS) levels. Adenosine triphosphatae (ATP) levels decreased, indicating mitochondrial dysfunction. Additionally, we found significant changes in mitochondrial dynamics related genes, with downregulation of mitofusin 2 (Mfn2) and silent information regulator 1 (SIRT1) and a decrease in sirtuin 3 (SIRT3) and tumor protein 53 (p53) mRNA levels. Annexin V-FITC fluorescence staining-positive cells increased with higher Cr(VI) concentrations, marked by elevated bcl-2-associated X protein (Bax) and cysteinyl aspartate specific proteinase (Caspase3) mRNA levels and reduced B-cell lymphoma-2 (Bcl2) expression. Autophagy-related genes were also affected, with increased microtubule-associated protein 1 light chain 3 (LC3-I), microtubule-associated protein light chain 3II (LC3-II), unc-51-like autophagy-activating kinase 1 (ULK1), and sequestosome 1 (p62/SQSTM1) mRNA levels and decreased mammalian target of rapamycin (mTOR) and Beclin1 expression. Taken together, Cr(VI) promotes cell apoptosis and autophagy in turtle hepatocytes by inducing oxidative stress and disrupting mitochondrial function. These findings highlight the serious health risks posed by Cr(VI) pollution and emphasize the need for protecting wild turtle populations.

18.
Anim Reprod Sci ; 261: 107395, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38104500

RESUMO

Embryology provides an understanding of individual's origin and developmental patterns. Turtles are among the oldest living reptiles and have unique body structure. However, the morphogenesis and mechanisms of turtles are not fully understood. In this study, we focused on the embryonic development of red-eared slider (Trachemys scripta elegans) which widely distributes in the world. At an incubation temperature of 28 °C, the turtle eggs had a 61-day incubation cycle, and the entire embryonic development process was divided into 27 stages and 3 phases according to variations in age, body size, and morphological characteristics. The early phase of embryonic development (the first 12 stages) were characterized by embryo growth, and the appearance of internal organ precursors. The middle phase (stages 13-20) involved prominent heart division at stage 13 and the appearance of carapace and plastron at stages 14 and 17, respectively. In the later phase (stages 21-27), the hatchlings formed, and the carapace and plastron thickened. Transcriptome analysis of embryos showed enrichment of the differential genes in pathways related to development, metabolism, disease, and cellular processes. The Kyoto Encyclopedia of Genes and Genomes enrichment (KEGG) analysis implied the crucial regulatory role of the axon guidance pathway. Real-time fluorescence quantitative PCR indicated upregulated expression of wnt5a and bmp7 in stages 7 and 16 compared to that in stage 12. This study revealed the development process of red-eared slider embryo and the dynamics of the signaling pathway affecting its development, which supplemented the theory of embryo development, and provided new ideas for the molecular mechanism of turtle embryo development.


Assuntos
Tartarugas , Animais , Tartarugas/genética , Óvulo , Desenvolvimento Embrionário/genética , Perfilação da Expressão Gênica/veterinária
19.
Front Microbiol ; 15: 1412015, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38873159

RESUMO

Gut microbes are pivotal reference indicators for assessing the health status of animals. Before introducing artificially bred species into the wild, examining their gut microbe composition is crucial to help mitigate potential threats posed to wild populations. However, gut microbiological trait similarities between wild and artificially bred green turtles remain unexplored. Therefore, this study compared the gut microbiological characteristics of wild and artificially bred green turtles (Chelonia mydas) through high-throughput Illumina sequencing technology. The α-diversity of intestinal bacteria in wild green turtles, as determined by Shannon and Chao indices, significantly surpasses that of artificial breeding green turtles (p < 0.01). However, no significant differences were detected in the fungal α-diversity between wild and artificially bred green turtles. Meanwhile, the ß-diversity analysis revealed significant differences between wild and artificially bred green turtles in bacterial and fungal compositions. The community of gut bacteria in artificially bred green turtles had a significantly higher abundance of Fusobacteriota including those belonging to the Paracoccus, Cetobacterium, and Fusobacterium genera than that of the wild green turtle. In contrast, the abundance of bacteria belonging to the phylum Actinobacteriota and genus Nautella significantly decreased. Regarding the fungal community, artificially bred green turtles had a significantly higher abundance of Fusarium, Sterigmatomyces, and Acremonium and a lower abundance of Candida and Rhodotorula than the wild green turtle. The PICRUSt2 analyses demonstrated significant differences in the functions of the gut bacterial flora between groups, particularly in carbohydrate and energy metabolism. Fungal functional guild analysis further revealed that the functions of the intestinal fungal flora of wild and artificially bred green turtles differed significantly in terms of animal pathogens-endophytes-lichen parasites-plant pathogens-soil saprotrophs-wood saprotrophs. BugBase analysis revealed significant potential pathogenicity and stress tolerance variations between wild and artificially bred green turtles. Collectively, this study elucidates the distinctive characteristics of gut microbiota in wild and artificially bred green turtles while evaluating their health status. These findings offer valuable scientific insights for releasing artificially bred green turtles and other artificially bred wildlife into natural habitats.

20.
Animals (Basel) ; 14(17)2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39272296

RESUMO

Dietary lipids provide energy for animals and can also be converted into other nutrients (such as non-essential amino acids), which play a role in saving protein. The Chinese stripe-necked turtle is a protected and endangered species that has been bred in captivity; however, basic data on lipid requirements remain unavailable. In this study, 360 Mauremys sinensis (body weight of 65.32 ± 0.15 g) were randomly divided into six groups with three replicates per group; the turtles were fed experimental diets supplemented with various levels of fish oil (i.e., 1% (control group, CG), 3.5% (HF-1), 6% (HF-2), 8.5% (HF-3), 11% (HF-4), and 13.5% (HF-5)) for 10 weeks. The results showed that compared with CG, increasing the fish oil level promoted the growth performance of turtles, and the HF-3 group achieved the best effect. The HF-4 group showed the highest increases in the hepatosomatic index and viscerosomatic index. In addition, increased lipid levels also increased the crude lipid content and reduced the crude protein content in muscle tissue. Oil red O staining showed that the liver lipid content increased with the level of supplemented fish oil, which is consistent with the results of the hepatosomatic index. Compared with CG, triglyceride, total cholesterol, and low-density lipoprotein cholesterol increased significantly in both the liver and serum when fish oil levels exceeded 8.5% (p < 0.05), while high-density lipoprotein cholesterol decreased significantly. Aspartate transaminase and cerealthirdtransaminase levels in serum increased significantly when fish oil levels exceeded 8.5% (p < 0.05). Moreover, the activities of antioxidant enzymes (GSH-Px, SOD, T-AOC, and CAT) and MDA showed similar results, indicating that high fish oil levels (8.5-13.5%) caused liver tissue damage in M. sinensis. Increased fish oil levels significantly upregulated the expression levels of cytokines (IFN-γ, TNF-α, TGF-ß1, IL-10, and IL-12) (p < 0.05), downregulated the expression levels of antioxidant enzyme-related genes (cat, mn-sod, and gsh-px), and increased apoptosis of liver cells. Supplementation of the diet with 3.5-6% fish oil improved the growth performance of M. sinensis, and the turtles maintained a beneficial immune status. The results provide a scientific basis for optimizing the commercial feed formula of M. sinensis.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa