Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 61(1): 154-169, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34902243

RESUMO

A precipitation method involving a deep eutectic solvent (DES)─a mixture of hydrogen bond donor and acceptor─is used to synthesize a ternary metal oxide. Without toxic reagents, precipitates consisting of Zn3(OH)2V2O7·nH2O and Zn5(OH)6(CO3)2 are obtained by simply introducing deionized H2O to the DES solution containing dissolved ZnO and V2O5. Manipulation of the synthetic conditions demonstrates high tunability in the size/morphology of the two-dimensional nanosheets precipitated during the dynamic equilibrium process. According to differential scanning calorimetry and high-temperature powder X-ray diffraction, Zn3V2O8 and ZnO obtained by the annealing of the precipitate are intermediates in the reaction pathway toward metastable Zn4V2O9. Intimate mixing of the metal precursors achieved by the precipitation method allows access to the metastable zinc-rich vanadate with unusually rapid heat treatment. The UV-vis and surface photovoltage spectra reveal the presence of sub-band gap states, stemming from the reduced vanadium (V4+) center. Photoelectrochemical measurements confirm weak photoanodic currents for water and methanol oxidation. For the first time, this work shows the synthesis of a metastable oxide with the DES-precipitation route and provides insight into the structure-property relationship of the zinc-rich vanadate.

2.
Artigo em Inglês | MEDLINE | ID: mdl-35545871

RESUMO

Oxide perovskites have attracted great interest as materials for energy conversion due to their stability and structural tunability. La-based perovskites of 3d-transition metals have demonstrated excellent activities as electrocatalysts in water oxidation. Herein, we report the synthesis route to La-based perovskites using an environmentally friendly deep eutectic solvent (DES) consisting of choline chloride and malonic acid. The DES route affords phase-pure crystalline materials on a gram scale and results in perovskites with high electrocatalytic activity for oxygen evolution reaction. A convenient, fast, and scalable synthesis proceeds via assisted metathesis at a lower temperature as compared to traditional solid-state methods. Among LaCoO3, LaMn0.5Ni0.5O3, and LaMnO3 perovskites prepared via the DES route, LaCoO3 was established to be the best-performing electrocatalyst for water oxidation in alkaline medium at 0.25 mg cm-2 mass loading. LaCoO3 exhibits current densities of 10, 50, and 100 mA cm-2 at respective overpotentials of approximately 390, 430, and 470 mV, respectively, and features a Tafel slope of 55.8 mV dec-1. The high activity of LaCoO3 as compared to the other prepared perovskites is attributed to the high concentration of oxygen vacancies in the LaCoO3 lattice, as observed by high-resolution transmission electron microscopy. An intrinsically high concentration of O vacancies in the LaCoO3 synthesized via the DES route is ascribed to the reducing atmosphere attained upon thermal decomposition of the DES components. These findings will contribute to the preparation of highly active perovskites for various energy applications.

3.
Obstet Gynecol Sci ; 63(6): 750-752, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32981288

RESUMO

Among the possible complications of radiation therapy, acute and chronic side effects on the skin can be induced by percutaneous radiotherapy in the target site. Common skin lesions include radiation dermatitis, which can be treated by topical application of dressing and ointment. Pemphigoid disease, which displays similar clinical features as other skin diseases such as recurrent cancer and herpes zoster, rarely occurs in the site of radiotherapy; therefore, care must be taken during diagnosis for a timely treatment. The present report is a case of pemphigoid disease that had developed in a patient with endometrioid/clear cell carcinoma after radiation therapy, and the time between onset and radiotherapy was more than 6 months.

4.
Materials (Basel) ; 12(1)2018 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-30586892

RESUMO

A layered Zintl antimonide NaZnSb (PbClF or Cu2Sb structure type; P4/nmm) was synthesized using the reactive sodium hydride NaH precursor. This method provides comprehensive compositional control and facilitates the fast preparation of high-purity samples in large quantities. NaZnSb is highly reactive to humidity/air and hydrolyzes to NaOH, ZnO, and Sb in aerobic conditions. On the other hand, NaZnSb is thermally stable up to 873 K in vacuum, as no structural changes were observed from high-temperature synchrotron powder X-ray diffraction data in the 300⁻873 K temperature range. The unit cell expansion upon heating is isotropic; however, interatomic distance elongation is not isotropic, consistent with the layered structure. Low- and high-temperature thermoelectric properties were measured on pellets densified by spark plasma sintering. The resistivity of NaZnSb ranges from 11 mΩ∙cm to 31 mΩ∙cm within the 2⁻676 K range, consistent with heavily doped semiconductor behavior, with a narrow band gap of 0.23 eV. NaZnSb has a large positive Seebeck coefficient (244 µV∙K-1 at 476 K), leading to the maximum of zT of 0.23 at 675 K. The measured thermoelectric properties are in good agreement with those predicted by theoretical calculations.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa