Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 19(14)2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31319601

RESUMO

For the fast and easy detection of carbon monoxide (CO) gas, it was necessary to develop a CO gas sensor to operate in low temperatures. Herein, a novel Cu/CuO-decorated ZnO hollow nanofiber was prepared with the electrospinning, calcination, and photodeposition methods. In the presence of 100 ppm CO gas, the Cu/CuO-photodeposited ZnO hollow nanofiber (Cu/CuO@ZnO HNF) showed twice higher sensitivity than that of pure ZnO nanofiber at a relatively low working temperature of 300 °C. The hollow structure and p-n junction between Cu/CuO and ZnO would be considered to contribute to the enhancement of sensitivity to CO gas at 300 °C due to the improved specific surface area and efficient electron transfer.

2.
Materials (Basel) ; 17(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38591561

RESUMO

Polylactic acid (PLA) and polybutylene succinate (PBS) are gaining prominence as environmentally friendly alternatives to petroleum-based polymers due to their inherent biodegradability. For their textile applications, this research is focused on exploring the effects of PBS content on the rheological properties of PLA/PBS blends and the characteristics of PLA/PBS blend fibers. PLA/PBS blends and fibers with varying PBS contents (0 to 10 wt.%) were prepared using melt-blending and spinning methods. Uniform morphologies of the PLA/PBS blends indicated that PBS was compatible with PLA, except at 10% PBS content, where phase separation occurred. The introduction of PBS reduced the complex viscosity of the blends, influencing fiber properties. Notably, PLA/PBS fibers with 7% PBS exhibited improved crystallinity, orientation factor, and elasticity (~16.58%), with a similar tensile strength to PLA fiber (~3.58 MPa). The results suggest that an optimal amount of PBS enhances alignment along the drawing direction and improves the molecular motion in PLA/PBS blend fiber. This study highlights the potential of strategically blending PBS to improve PLA fiber characteristics, promising advancement in textile applications.

3.
Nanomaterials (Basel) ; 10(11)2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33120867

RESUMO

The development of a highly sensitive gas sensor for toxic gases is an important issue in that it can reduce the damage caused by unexpected gas leaks. In this regard, in order to make the sensor accurate and highly responsive, we have investigated which morphology is effective to improve the sensitivity and how the deposited nanoparticle affects the sensitivity by controlling the morphology of semiconductor oxides-either nanorod or nanoplate-and depositing metal nanoparticles on the semiconductor surface. In this study, we compared the CO gas sensitivity for sensors with different morphology (rod and plate) of ZnO nanostructure with metal nanoparticles (gold and copper) photodeposited and investigated the correlation between the gas sensitivity and some factors such as the morphology of ZnO and the properties of the deposited metal. Among the samples, Au/ZnO nanorod showed the best response (~86%) to the exposure of 100 ppm CO gas at 200 °C. The result showed that the electrical properties due to the deposition of metal species also have a strong influence on the sensor properties such as sensor response, working temperature, the response and recovery time, etc., together with the morphology of ZnO.

4.
J Nanosci Nanotechnol ; 19(12): 7721-7728, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31196281

RESUMO

In this study, the morphological effects of ZnO on the antimicrobial and deodorant activities of synthetic fibers were investigated. Three different polyethylene terephthalate (PET)/ZnO filaments were prepared by incorporating various ZnO nanostructures (rods, plates, and spheres) into PET filaments via a melt-spinning process. The antimicrobial activity of the as-prepared fibers was evaluated by the shake-flask method using two types of bacteria (Staphylococcus aureus and Klebsiella pneumoniae). The deodorant activity of the as-prepared fibers was evaluated by the gas detection tube method. All the PET/ZnO filaments exhibited excellent antimicrobial activity with a bacterial reduction value of 99.9%. The PET/ZnO rod filament showed the best deodorant performance of 60.0%. Both the antimicrobial and deodorant activities of the PET/ZnO filaments were influenced by the morphology of ZnO. However, the morphology of ZnO had a different effect on each functionality of the PET/ZnO filaments. The antimicrobial activity of the PET/ZnO filaments was mainly affected by the physical properties of ZnO rather than its morphology. By contrast, the deodorant activity of the PET/ZnO filaments was highly influenced by the morphology of ZnO.


Assuntos
Anti-Infecciosos , Desodorantes , Óxido de Zinco , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Polietilenotereftalatos/farmacologia , Óxido de Zinco/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa