Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(28): e202303890, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37071554

RESUMO

Herein, by choosing few-nm-thin two-dimensional (2D) nanocrystals of MOF-5 containing in-planner square lattices as a modular platform, a crystal lattice-guided wet-chemical etching has been rationally accomplished. As a result, two attractive pore patterns carrying Euclidean curvatures; precisely, plus(+)-shaped and fractal-patterned pores via ⟨100⟩ and ⟨110⟩ directional etching, respectively, are regulated in contrast to habitually formed spherical-shaped random etches on MOF surface. In agreement with the theoretical calculations, a diffusion-limited etching process has been optimized to devise high-yield of size-tunable fractal-pores on the MOF surface that tenders for a compatibly high payload of catalytic ReI -complexes using the existing large edge area once modified into a free amine-group-exposed inner pore surface. Finally, on benefiting from the long-range fractal opening in 2D MOF support structure, while loaded on an electrode surface, a facilitated cross-interface charge-transportation and well-exposure of immobilized ReI -catalysts are anticipated, thus realizing enhanced activity and stability of the supported catalyst in photoelectrochemical CO2 -to-CO reduction.

2.
Angew Chem Int Ed Engl ; 62(31): e202307816, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37335309

RESUMO

The performance of nanocrystal (NC) catalysts could be maximized by introducing rationally designed heterointerfaces formed by the facet- and spatio-specific modification with other materials of desired size and thickness. However, such heterointerfaces are limited in scope and synthetically challenging. Herein, we applied a wet chemistry method to tunably deposit Pd and Ni on the available surfaces of porous 2D-Pt nanodendrites (NDs). Using 2D silica nanoreactors to house the 2D-PtND, an 0.5-nm-thick epitaxial Pd or Ni layer (e-Pd or e-Ni) was exclusively formed on the flat {110} surface of 2D-Pt, while a non-epitaxial Pd or Ni layer (n-Pd or n-Ni) was typically deposited at the {111/100} edge in absence of nanoreactor. Notably, these differently located Pd/Pt and Ni/Pt heterointerfaces experienced distinct electronic effect to influence unequally in electrocatalytic synergy for hydrogen evolution reaction (HER). For instance, an enhanced H2 generation on the Pt{110} facet with 2D-2D interfaced e-Pd deposition and faster water dissociation on the edge-located n-Ni overpowered their facet-located counterparts in respective HER catalysis. Therefore, a feasible assembling of the valuable heterointerfaces in the optimal 2D n-Ni/e-Pd/Pt catalyst overcame the sluggish alkaline HER kinetics, with a catalytic activity 7.9 times higher than that of commercial Pt/C.

3.
J Am Chem Soc ; 144(20): 9033-9043, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35486818

RESUMO

Despite the Pt-catalyzed alkaline hydrogen evolution reaction (HER) progressing via oxophilic metal-hydroxide surface hybridization, maximizing Pt reactivity alongside operational stability is still unsatisfactory due to the lack of well-designed and optimized interface structures. Producing atomically flat two-dimensional Pt nanodendrites (2D-PtNDs) through our 2D nanospace-confined synthesis strategy, this study tackles the insufficient interfacial contact effect during HER catalysis by realizing an area-maximized and firmly bound lateral heterointerface with NiFe-layered double hydroxide (LDH). The well-oriented {110} crystal surface exposure of Pt promotes electronic interplay that bestows strong LDH binding. The charge-relocated interfacial bond in 2D-PtND/LDH accelerates the hydrogen generation steps and achieves nearly the highest reported Pt mass activity enhancement (∼11.2 times greater than 20 wt % Pt/C) and significantly improved long-term operational stability. This work uncovers the importance of the shape and facet of Pt to create heterointerfaces that provide catalytic synergy for efficient hydrogen production.

4.
Phys Chem Chem Phys ; 19(41): 28207-28215, 2017 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-29026899

RESUMO

Titanium dioxide (TiO2) with exposed (001) facets (TiO2(001)) has attractive photocatalytic properties. However, the high recombination rate of the photo-excited charge carriers on this surface often limits its application. Here, we report that a few-layered 1T-MoS2 coating on TiO2(001) nanosheets (abbreviated as MST) can be a promising candidate that overcomes some of the challenges of TiO2(001). Computational and experimental results demonstrate that MST as a photocatalyst exhibits a significantly low-charge recombination rate as well as excellent long-term durability. The synthesized MST 2D nanocomposites show a 31.9% increase in photocatalytic activity for hydrogen (H2) production relative to the counterpart TiO2(001). MST offers a new route for further improvement of the photocatalytic activity of TiO2 with exposed high energy facets.

5.
ACS Nano ; 16(12): 21111-21119, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36445197

RESUMO

Nanoscale optimization of late transition-metal oxides for fixing the reversible lithiation/delithiation mechanism with an in-depth mechanistic understanding of nanocrystal (NC) conversion chemistry is important for furthering next-generation Li-ion battery (LIB) technologies. Herein, 1 nm-thin Ni3CoOx (1 nm-NCO) nanosheets synthesized through isomorphic transformation of NiCo layered double hydroxides within a two-dimensional (2D)-SiO2 envelope are chosen. The interconversion of metal/metal-oxide NCs under redox-switching thermal treatment, while retaining reversibility, inspired the accomplishment of identical consequences under the harsh operational conditions of LIB redox cycles by application of the thin-NCO-defined 2D nanospace. During charge/discharge cycles, 1 nm-NCO covered with an in situ formed solid-electrolyte-interphase layer enables fully reversible interconversion between the reactive NC redox pairs, as evidenced by detailed morphological and electrochemical analyses, thus providing high-rate capability with a specific capacity of 61.2% at 5.0 C relative to 0.2 C, outstanding cycle stability delivering a reversible capacity of 1169 mAh g-1, and 913 mAh g-1 with high average Coulombic efficiency (>99.2%) at 3.0 and 5.0 C for 1000 cycles, respectively, which has not been achieved with other transition-metal oxides. Such a nanospace-confinement effect on sustainability of reactive NCs to follow-up a highly reversible conversion reaction at fast charging in LIBs is operative within a slit-like ultrathin 2D nanogap from 1 nm-NCO only, as a relatively thicker 7 nm-NCO anode, with accompanying larger space available, has evidenced poor reversibility of NCs and inadequate cyclic stability under potential high-power density LIB application.

6.
ACS Nano ; 14(8): 10578-10588, 2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32806078

RESUMO

Next-generation electrocatalysts with smart integrated designs, maximizing the chemical cascade synergy for sustainable hydrogen production, are needed to address the urgent environmental threats, but scalable synthesis of precisely architectured nanohybrids rendering a few-nanometer interfacial controllability to augment the catalytic reactivity and operational stability is a major bottleneck. Herein, by inventing a surface-confined lateral growth of nanometer-thin and nanoporous two-dimensional (2D)-Pt on NiFe-LDH nanosheets, a highly reactive 2D-2D interfacially integrated nanoplatform is synthesized for an alkaline hydrogen evolution reaction (HER) which not only extracts high Pt-atomic utilization efficiency but also synergistically accelerates the water dissociation and hydrogen generation cascade on the colocalized Pt/M(OH)x active sites, endowing a 6.1-fold higher Pt mass activity than 20% Pt/C and also empowers a record-high HER operational stability for 50 h, due to the chemically enforced lamellar architecture. This work offers a gateway to produce active metal nanosheets tailored with a suitable active-template surface in order to invent and enforce futuristic catalysis technologies.

7.
R Soc Open Sci ; 5(9): 180927, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30839659

RESUMO

The development of electrochemical devices for renewable energy depends to a large extent on fundamental improvements in catalysts for oxygen evolution reactions (OERs). OER activity of transition metal sulfides (TMSs) can be improved by compositing with highly conductive supports possessing a high surface-to-volume ratio, such as reduced graphene oxide (rGO). Herein we report on the relationship between synthetic conditions and the OER catalytic properties of TMSs and rGO (TMS-rGO) hybrids. Starting materials, reaction temperature and reaction time were controlled to synergistically boost the OER catalytic activity of TMS-rGO hybrids. Our results showed that (i) compared with sulfides, hydroxides are favourable as starting materials to produce the desired TMS-rGO hybrid nanostructure and (ii) high reaction temperatures and longer reaction times can increase physico-chemical interaction between TMSs and rGO supports, resulting in highly efficient OER catalytic activity.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa