Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Hum Brain Mapp ; 41(10): 2846-2861, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32243040

RESUMO

This study examined global resting-state functional connectivity of neural oscillations in individuals with chronic tinnitus and normal and impaired hearing. We tested the hypothesis that distinct neural oscillatory networks are engaged in tinnitus with and without hearing loss. In both tinnitus groups, with and without hearing loss, we identified multiple frequency band-dependent regions of increased and decreased global functional connectivity. We also found that the auditory domain of tinnitus severity, assayed by the Tinnitus Functional Index, was associated with global functional connectivity in both auditory and nonauditory regions. These findings provide candidate biomarkers to target and monitor treatments for tinnitus with and without hearing loss.


Assuntos
Ondas Encefálicas/fisiologia , Córtex Cerebral/fisiopatologia , Conectoma , Perda Auditiva/fisiopatologia , Magnetoencefalografia , Rede Nervosa/fisiopatologia , Zumbido/fisiopatologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Córtex Auditivo/diagnóstico por imagem , Córtex Auditivo/fisiopatologia , Córtex Cerebral/diagnóstico por imagem , Feminino , Perda Auditiva/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Magnetoencefalografia/métodos , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Índice de Gravidade de Doença , Zumbido/diagnóstico por imagem , Adulto Jovem
2.
Hum Brain Mapp ; 40(4): 1082-1092, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30549134

RESUMO

In patients with gliomas, changes in hemispheric specialization for language determined by magnetoencephalography (MEG) were analyzed to elucidate the impact of treatment and tumor recurrence on language networks. Demonstration of reorganization of language networks in these patients has significant implications on the prevention of postoperative functional loss and recovery. Whole-brain activity during an auditory verb generation task was estimated from MEG recordings in a group of 73 patients with recurrent gliomas. Hemisphere of language dominance was estimated using the language laterality index (LI), a measure derived from the task. The initial scan was performed prior to resection; patients subsequently underwent surgery and adjuvant treatment. A second scan was performed upon recurrence prior to repeat resection. The relationship between the shift in LI between scans and demographics, anatomic location, pathology, and adjuvant treatment was analyzed. Laterality shifts were observed between scans; the median percent change was 29.1% across all patients. Laterality shift magnitude and relative direction were associated with the initial position of language dominance; patients with increased lateralization experienced greater shifts than those presenting more bilateral representation. A change in LI from left or right to bilateral (or vice versa) occurred in 23.3% of patients; complete switch occurred in 5.5% of patients. Patients with tumors within the language-dominant hemisphere experienced significantly greater shifts than those with contralateral tumors. The majority of patients with glioma experience shifts in language network organization over time which correlate with the relative position of language lateralization and tumor location.


Assuntos
Mapeamento Encefálico/métodos , Neoplasias Encefálicas/fisiopatologia , Lateralidade Funcional/fisiologia , Glioma/fisiopatologia , Plasticidade Neuronal/fisiologia , Adolescente , Adulto , Idoso , Feminino , Humanos , Idioma , Magnetoencefalografia/métodos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/fisiopatologia , Neuroimagem/métodos , Estudos Retrospectivos , Adulto Jovem
3.
Brain ; 140(10): 2737-2751, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28969381

RESUMO

Primary progressive aphasia is a syndrome characterized by progressive loss of language abilities with three main phenotypic clinical presentations, including logopenic, non-fluent/agrammatic, and semantic variants. Previous imaging studies have shown unique anatomic impacts within language networks in each variant. However, direct measures of spontaneous neuronal activity and functional integrity of these impacted neural networks in primary progressive aphasia are lacking. The aim of this study was to characterize the spatial and temporal patterns of resting state neuronal synchronizations in primary progressive aphasia syndromes. We hypothesized that resting state brain oscillations will show unique deficits within language network in each variant of primary progressive aphasia. We examined 39 patients with primary progressive aphasia including logopenic variant (n = 14, age = 61 ± 9 years), non-fluent/agrammatic variant (n = 12, age = 71 ± 8 years) and semantic variant (n = 13, age = 65 ± 7 years) using magnetoencephalographic imaging, compared to a control group that was matched in age and gender to each primary progressive aphasia subgroup (n = 20, age = 65 ± 5 years). Each patient underwent a complete clinical evaluation including a comprehensive battery of language tests. We examined the whole-brain resting state functional connectivity as measured by imaginary coherence in each patient group compared to the control cohort, in three frequency oscillation bands-delta-theta (2-8 Hz); alpha (8-12 Hz); beta (12-30 Hz). Each variant showed a distinct spatiotemporal pattern of altered functional connectivity compared to age-matched controls. Specifically, we found significant hyposynchrony of alpha and beta frequency within the left posterior temporal and occipital cortices in patients with the logopenic variant, within the left inferior frontal cortex in patients with the non-fluent/agrammatic variant, and within the left temporo-parietal junction in patients with the semantic variant. Patients with logopenic variant primary progressive aphasia also showed significant hypersynchrony of delta-theta frequency within bilateral medial frontal and posterior parietal cortices. Furthermore, region of interest-based analyses comparing the spatiotemporal patterns of variant-specific regions of interest identified in comparison to age-matched controls showed significant differences between primary progressive aphasia variants themselves. We also found distinct patterns of regional spectral power changes in each primary progressive aphasia variant, compared to age-matched controls. Our results demonstrate neurophysiological signatures of network-specific neuronal dysfunction in primary progressive aphasia variants. The unique spatiotemporal patterns of neuronal synchrony signify diverse neurophysiological disruptions and pathological underpinnings of the language network in each variant.


Assuntos
Afasia Primária Progressiva/patologia , Mapeamento Encefálico , Encéfalo/fisiopatologia , Idoso , Idoso de 80 Anos ou mais , Afasia Primária Progressiva/classificação , Afasia Primária Progressiva/diagnóstico por imagem , Atrofia/etiologia , Atrofia/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Ondas Encefálicas/fisiologia , Transtornos Cognitivos/diagnóstico , Transtornos Cognitivos/etiologia , Feminino , Lateralidade Funcional , Substância Cinzenta/patologia , Humanos , Interpretação de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Magnetoencefalografia , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Curva ROC
4.
Ann Neurol ; 80(6): 858-870, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27696483

RESUMO

OBJECTIVE: Seizures are more frequent in patients with Alzheimer's disease (AD) and can hasten cognitive decline. However, the incidence of subclinical epileptiform activity in AD and its consequences are unknown. Motivated by results from animal studies, we hypothesized higher than expected rates of subclinical epileptiform activity in AD with deleterious effects on cognition. METHODS: We prospectively enrolled 33 patients (mean age, 62 years) who met criteria for AD, but had no history of seizures, and 19 age-matched, cognitively normal controls. Subclinical epileptiform activity was assessed, blinded to diagnosis, by overnight long-term video-electroencephalography (EEG) and a 1-hour resting magnetoencephalography exam with simultaneous EEG. Patients also had comprehensive clinical and cognitive evaluations, assessed longitudinally over an average period of 3.3 years. RESULTS: Subclinical epileptiform activity was detected in 42.4% of AD patients and 10.5% of controls (p = 0.02). At the time of monitoring, AD patients with epileptiform activity did not differ clinically from those without such activity. However, patients with subclinical epileptiform activity showed faster declines in global cognition, determined by the Mini-Mental State Examination (3.9 points/year in patients with epileptiform activity vs 1.6 points/year in patients without; p = 0.006), and in executive function (p = 0.01). INTERPRETATION: Extended monitoring detects subclinical epileptiform activity in a substantial proportion of patients with AD. Patients with this indicator of network hyperexcitability are at risk for accelerated cognitive decline and might benefit from antiepileptic therapies. These data call for more sensitive and comprehensive neurophysiological assessments in AD patient evaluations and impending clinical trials. Ann Neurol 2016;80:858-870.


Assuntos
Doença de Alzheimer/epidemiologia , Convulsões/epidemiologia , California/epidemiologia , Estudos de Casos e Controles , Comorbidade , Eletroencefalografia , Feminino , Humanos , Incidência , Imageamento por Ressonância Magnética , Magnetoencefalografia , Masculino , Pessoa de Meia-Idade , Neuroimagem , Testes Neuropsicológicos , Sintomas Prodrômicos , Estudos Prospectivos
5.
Brain ; 138(Pt 8): 2249-62, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25981965

RESUMO

Intractable focal epilepsy is a devastating disorder with profound effects on cognition and quality of life. Epilepsy surgery can lead to seizure freedom in patients with focal epilepsy; however, sometimes it fails due to an incomplete delineation of the epileptogenic zone. Brain networks in epilepsy can be studied with resting-state functional connectivity analysis, yet previous investigations using functional magnetic resonance imaging or electrocorticography have produced inconsistent results. Magnetoencephalography allows non-invasive whole-brain recordings, and can be used to study both long-range network disturbances in focal epilepsy and regional connectivity at the epileptogenic zone. In magnetoencephalography recordings from presurgical epilepsy patients, we examined: (i) global functional connectivity maps in patients versus controls; and (ii) regional functional connectivity maps at the region of resection, compared to the homotopic non-epileptogenic region in the contralateral hemisphere. Sixty-one patients were studied, including 30 with mesial temporal lobe epilepsy and 31 with focal neocortical epilepsy. Compared with a group of 31 controls, patients with epilepsy had decreased resting-state functional connectivity in widespread regions, including perisylvian, posterior temporo-parietal, and orbitofrontal cortices (P < 0.01, t-test). Decreased mean global connectivity was related to longer duration of epilepsy and higher frequency of consciousness-impairing seizures (P < 0.01, linear regression). Furthermore, patients with increased regional connectivity within the resection site (n = 24) were more likely to achieve seizure postoperative seizure freedom (87.5% with Engel I outcome) than those with neutral (n = 15, 64.3% seizure free) or decreased (n = 23, 47.8% seizure free) regional connectivity (P < 0.02, chi-square). Widespread global decreases in functional connectivity are observed in patients with focal epilepsy, and may reflect deleterious long-term effects of recurrent seizures. Furthermore, enhanced regional functional connectivity at the area of resection may help predict seizure outcome and aid surgical planning.


Assuntos
Mapeamento Encefálico , Córtex Cerebral/fisiopatologia , Epilepsias Parciais/terapia , Adulto , Mapeamento Encefálico/métodos , Eletrodos Implantados , Epilepsias Parciais/fisiopatologia , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Magnetoencefalografia/métodos , Masculino , Resultado do Tratamento
6.
Epilepsia ; 56(6): 949-58, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25921215

RESUMO

OBJECTIVE: The efficacy of epilepsy surgery depends critically upon successful localization of the epileptogenic zone. Magnetoencephalography (MEG) enables noninvasive detection of interictal spike activity in epilepsy, which can then be localized in three dimensions using magnetic source imaging (MSI) techniques. However, the clinical value of MEG in the presurgical epilepsy evaluation is not fully understood, as studies to date are limited by either a lack of long-term seizure outcomes or small sample size. METHODS: We performed a retrospective cohort study of patients with focal epilepsy who received MEG for interictal spike mapping followed by surgical resection at our institution. RESULTS: We studied 132 surgical patients, with mean postoperative follow-up of 3.6 years (minimum 1 year). Dipole source modeling was successful in 103 patients (78%), whereas no interictal spikes were seen in others. Among patients with successful dipole modeling, MEG findings were concordant with and specific to the following: (1) the region of resection in 66% of patients, (2) invasive electrocorticography (ECoG) findings in 67% of individuals, and (3) the magnetic resonance imaging (MRI) abnormality in 74% of cases. MEG showed discordant lateralization in ~5% of cases. After surgery, 70% of all patients achieved seizure freedom (Engel class I outcome). Whereas 85% of patients with concordant and specific MEG findings became seizure-free, this outcome was achieved by only 37% of individuals with MEG findings that were nonspecific to or discordant with the region of resection (χ(2) = 26.4, p < 0.001). MEG reliability was comparable in patients with or without localized scalp electroencephalography (EEG), and overall, localizing MEG findings predicted seizure freedom with an odds ratio of 5.11 (95% confidence interval [CI] 2.23-11.8). SIGNIFICANCE: MEG is a valuable tool for noninvasive interictal spike mapping in epilepsy surgery, including patients with nonlocalized findings receiving long-term EEG monitoring, and localization of the epileptogenic zone using MEG is associated with improved seizure outcomes.


Assuntos
Ondas Encefálicas/fisiologia , Magnetoencefalografia , Convulsões/diagnóstico , Convulsões/patologia , Adulto , Distribuição de Qui-Quadrado , Estudos de Coortes , Eletroencefalografia , Epilepsia/cirurgia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Resultado do Tratamento
7.
bioRxiv ; 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38352614

RESUMO

Sensory processing dysfunction not only affects most individuals with autism spectrum disorder (ASD), but at least 5% of children without ASD also experience dysfunctional sensory processing. Our understanding of the relationship between sensory dysfunction and resting state brain activity is still emerging. This study compared long-range resting state functional connectivity of neural oscillatory behavior in children aged 8-12 years with autism spectrum disorder (ASD; N=18), those with sensory processing dysfunction (SPD; N=18) who do not meet ASD criteria, and typically developing control participants (TDC; N=24) using magnetoencephalography (MEG). Functional connectivity analyses were performed in the alpha and beta frequency bands, which are known to be implicated in sensory information processing. Group differences in functional connectivity and associations between sensory abilities and functional connectivity were examined. Distinct patterns of functional connectivity differences between ASD and SPD groups were found only in the beta band, but not in the alpha band. In both alpha and beta bands, ASD and SPD cohorts differed from the TDC cohort. Somatosensory cortical beta-band functional connectivity was associated with tactile processing abilities, while higher-order auditory cortical alpha-band functional connectivity was associated with auditory processing abilities. These findings demonstrate distinct long-range neural synchrony alterations in SPD and ASD that are associated with sensory processing abilities. Neural synchrony measures could serve as potential sensitive biomarkers for ASD and SPD.

8.
Neuroimage ; 82: 260-72, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23702420

RESUMO

OBJECTIVE: Lesion-based mapping of speech pathways has been possible only during invasive neurosurgical procedures using direct cortical stimulation (DCS). However, navigated transcranial magnetic stimulation (nTMS) may allow for lesion-based interrogation of language pathways noninvasively. Although not lesion-based, magnetoencephalographic imaging (MEGI) is another noninvasive modality for language mapping. In this study, we compare the accuracy of nTMS and MEGI with DCS. METHODS: Subjects with lesions around cortical language areas underwent preoperative nTMS and MEGI for language mapping. nTMS maps were generated using a repetitive TMS protocol to deliver trains of stimulations during a picture naming task. MEGI activation maps were derived from adaptive spatial filtering of beta-band power decreases prior to overt speech during picture naming and verb generation tasks. The subjects subsequently underwent awake language mapping via intraoperative DCS. The language maps obtained from each of the 3 modalities were recorded and compared. RESULTS: nTMS and MEGI were performed on 12 subjects. nTMS yielded 21 positive language disruption sites (11 speech arrest, 5 anomia, and 5 other) while DCS yielded 10 positive sites (2 speech arrest, 5 anomia, and 3 other). MEGI isolated 32 sites of peak activation with language tasks. Positive language sites were most commonly found in the pars opercularis for all three modalities. In 9 instances the positive DCS site corresponded to a positive nTMS site, while in 1 instance it did not. In 4 instances, a positive nTMS site corresponded to a negative DCS site, while 169 instances of negative nTMS and DCS were recorded. The sensitivity of nTMS was therefore 90%, specificity was 98%, the positive predictive value was 69% and the negative predictive value was 99% as compared with intraoperative DCS. MEGI language sites for verb generation and object naming correlated with nTMS sites in 5 subjects, and with DCS sites in 2 subjects. CONCLUSION: Maps of language function generated with nTMS correlate well with those generated by DCS. Negative nTMS mapping also correlates with negative DCS mapping. In our study, MEGI lacks the same level of correlation with intraoperative mapping; nevertheless it provides useful adjunct information in some cases. nTMS may offer a lesion-based method for noninvasively interrogating language pathways and be valuable in managing patients with peri-eloquent lesions.


Assuntos
Mapeamento Encefálico/métodos , Vias Neurais/fisiopatologia , Fala/fisiologia , Estimulação Magnética Transcraniana/métodos , Adulto , Idoso , Neoplasias Encefálicas/complicações , Córtex Cerebral/fisiopatologia , Feminino , Humanos , Idioma , Imageamento por Ressonância Magnética , Magnetoencefalografia , Masculino , Pessoa de Meia-Idade , Processamento de Sinais Assistido por Computador , Distúrbios da Fala/etiologia , Distúrbios da Fala/fisiopatologia , Adulto Jovem
9.
Ann Neurol ; 71(5): 668-86, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22522481

RESUMO

OBJECTIVE: The goal of the current study was to examine the dynamics of language lateralization using magnetoencephalographic (MEG) imaging, to determine the sensitivity and specificity of MEG imaging, and to determine whether MEG imaging can become a viable alternative to the intracarotid amobarbital procedure (IAP), the current gold standard for preoperative language lateralization in neurosurgical candidates. METHODS: MEG was recorded during an auditory verb generation task and imaging analysis of oscillatory activity was initially performed in 21 subjects with epilepsy, brain tumor, or arteriovenous malformation who had undergone IAP and MEG. Time windows and brain regions of interest that best discriminated between IAP-determined left or right dominance for language were identified. Parameters derived in the retrospective analysis were applied to a prospective cohort of 14 patients and healthy controls. RESULTS: Power decreases in the beta frequency band were consistently observed following auditory stimulation in inferior frontal, superior temporal, and parietal cortices; similar power decreases were also seen in inferior frontal cortex prior to and during overt verb generation. Language lateralization was clearly observed to be a dynamic process that is bilateral for several hundred milliseconds during periods of auditory perception and overt speech production. Correlation with the IAP was seen in 13 of 14 (93%) prospective patients, with the test demonstrating a sensitivity of 100% and specificity of 92%. INTERPRETATION: Our results demonstrate excellent correlation between MEG imaging findings and the IAP for language lateralization, and provide new insights into the spatiotemporal dynamics of cortical speech processing.


Assuntos
Mapeamento Encefálico/métodos , Dominância Cerebral/fisiologia , Magnetoencefalografia/métodos , Neuroimagem/métodos , Adolescente , Adulto , Neoplasias Encefálicas/cirurgia , Epilepsia/cirurgia , Feminino , Humanos , Idioma , Masculino , Pessoa de Meia-Idade , Sensibilidade e Especificidade , Processamento de Sinais Assistido por Computador , Adulto Jovem
10.
Ann Neurol ; 69(3): 521-32, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21400562

RESUMO

OBJECTIVE: Resection of brain tumors adjacent to eloquent areas represents a challenge in neurosurgery. If maximal resection is desired without inducing postoperative neurological deficits, a detailed knowledge of the functional topography in and around the tumor is crucial. The aim of the present work is to evaluate the value of preoperative magnetoencephalography (MEG) imaging of functional connectivity to predict the results of intraoperative electrical stimulation (IES) mapping, the clinical gold standard for neurosurgical localization of functional areas. METHODS: Resting-state whole-cortex MEG recordings were obtained from 57 consecutive subjects with focal brain tumors near or within motor, sensory, or language areas. Neural activity was estimated using adaptive spatial filtering algorithms, and the mean imaginary coherence between the rest of the brain and voxels in and around brain tumors were compared to the mean imaginary coherence between the rest of the brain and contralesional voxels as an index of functional connectivity. IES mapping was performed in all subjects. The cortical connectivity pattern near the tumor was compared to the IES results. RESULTS: Maps with decreased resting-state functional connectivity in the entire tumor area had a negative predictive value of 100% for absence of eloquent cortex during IES. Maps showing increased resting-state functional connectivity within the tumor area had a positive predictive value of 64% for finding language, motor, or sensory cortical sites during IES mapping. INTERPRETATION: Preoperative resting state MEG connectivity analysis is a useful noninvasive tool to evaluate the functionality of the tissue surrounding tumors within eloquent areas, and could potentially contribute to surgical planning and patient counseling.


Assuntos
Neoplasias Encefálicas/fisiopatologia , Córtex Cerebral/fisiopatologia , Glioma/fisiopatologia , Rede Nervosa/fisiopatologia , Adulto , Idoso , Mapeamento Encefálico , Neoplasias Encefálicas/patologia , Córtex Cerebral/patologia , Estimulação Elétrica , Feminino , Glioma/patologia , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Magnetoencefalografia , Masculino , Pessoa de Meia-Idade , Rede Nervosa/patologia , Período Pré-Operatório , Estatísticas não Paramétricas
11.
Brain Commun ; 4(2): fcac031, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35356032

RESUMO

Laryngeal dystonia is a debilitating disorder of voicing in which the laryngeal muscles are intermittently in spasm resulting in involuntary interruptions during speech. The central pathophysiology of laryngeal dystonia, underlying computational impairments in vocal motor control, remains poorly understood. Although prior imaging studies have found aberrant activity in the CNS during phonation in patients with laryngeal dystonia, it is not known at what timepoints during phonation these abnormalities emerge and what function may be impaired. To investigate this question, we recruited 22 adductor laryngeal dystonia patients (15 female, age range = 28.83-72.46 years) and 18 controls (eight female, age range = 27.40-71.34 years). We leveraged the fine temporal resolution of magnetoencephalography to monitor neural activity around glottal movement onset, subsequent voice onset and after the onset of pitch feedback perturbations. We examined event-related beta-band (12-30 Hz) and high-gamma-band (65-150 Hz) neural oscillations. Prior to glottal movement onset, we observed abnormal frontoparietal motor preparatory activity. After glottal movement onset, we observed abnormal activity in the somatosensory cortex persisting through voice onset. Prior to voice onset and continuing after, we also observed abnormal activity in the auditory cortex and the cerebellum. After pitch feedback perturbation onset, we observed no differences between controls and patients in their behavioural responses to the perturbation. But in patients, we did find abnormal activity in brain regions thought to be involved in the auditory feedback control of vocal pitch (premotor, motor, somatosensory and auditory cortices). Our study results confirm the abnormal processing of somatosensory feedback that has been seen in other studies. However, there were several remarkable findings in our study. First, patients have impaired vocal motor activity even before glottal movement onset, suggesting abnormal movement preparation. These results are significant because (i) they occur before movement onset, abnormalities in patients cannot be ascribed to deficits in vocal performance and (ii) they show that neural abnormalities in laryngeal dystonia are more than just abnormal responses to sensory feedback during phonation as has been hypothesized in some previous studies. Second, abnormal auditory cortical activity in patients begins even before voice onset, suggesting abnormalities in setting up auditory predictions before the arrival of auditory feedback at voice onset. Generally, activation abnormalities identified in key brain regions within the speech motor network around various phonation events not only provide temporal specificity to neuroimaging phenotypes in laryngeal dystonia but also may serve as potential therapeutic targets for neuromodulation.

12.
JAMA Neurol ; 78(11): 1345-1354, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34570177

RESUMO

Importance: Network hyperexcitability may contribute to cognitive dysfunction in patients with Alzheimer disease (AD). Objective: To determine the ability of the antiseizure drug levetiracetam to improve cognition in persons with AD. Design, Setting, and Participants: The Levetiracetam for Alzheimer's Disease-Associated Network Hyperexcitability (LEV-AD) study was a phase 2a randomized double-blinded placebo-controlled crossover clinical trial of 34 adults with AD that was conducted at the University of California, San Francisco, and the University of Minnesota, Twin Cities, between October 16, 2014, and July 21, 2020. Participants were adults 80 years and younger who had a Mini-Mental State Examination score of 18 points or higher and/or a Clinical Dementia Rating score of less than 2 points. Screening included overnight video electroencephalography and a 1-hour resting magnetoencephalography examination. Interventions: Group A received placebo twice daily for 4 weeks followed by a 4-week washout period, then oral levetiracetam, 125 mg, twice daily for 4 weeks. Group B received treatment using the reverse sequence. Main Outcomes and Measures: The primary outcome was the ability of levetiracetam treatment to improve executive function (measured by the National Institutes of Health Executive Abilities: Measures and Instruments for Neurobehavioral Evaluation and Research [NIH-EXAMINER] composite score). Secondary outcomes were cognition (measured by the Stroop Color and Word Test [Stroop] interference naming subscale and the Alzheimer's Disease Assessment Scale-Cognitive Subscale) and disability. Exploratory outcomes included performance on a virtual route learning test and scores on cognitive and functional tests among participants with epileptiform activity. Results: Of 54 adults assessed for eligibility, 11 did not meet study criteria, and 9 declined to participate. A total of 34 adults (21 women [61.8%]; mean [SD] age, 62.3 [7.7] years) with AD were enrolled and randomized (17 participants to group A and 17 participants to group B). Thirteen participants (38.2%) were categorized as having epileptiform activity. In total, 28 participants (82.4%) completed the study, 10 of whom (35.7%) had epileptiform activity. Overall, treatment with levetiracetam did not change NIH-EXAMINER composite scores (mean difference vs placebo, 0.07 points; 95% CI, -0.18 to 0.32 points; P = .55) or secondary measures. However, among participants with epileptiform activity, levetiracetam treatment improved performance on the Stroop interference naming subscale (net improvement vs placebo, 7.4 points; 95% CI, 0.2-14.7 points; P = .046) and the virtual route learning test (t = 2.36; Cohen f2 = 0.11; P = .02). There were no treatment discontinuations because of adverse events. Conclusions and Relevance: In this randomized clinical trial, levetiracetam was well tolerated and, although it did not improve the primary outcome, in prespecified analysis, levetiracetam improved performance on spatial memory and executive function tasks in patients with AD and epileptiform activity. These exploratory findings warrant further assessment of antiseizure approaches in AD. Trial Registration: ClinicalTrials.gov Identifier: NCT02002819.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Anticonvulsivantes/uso terapêutico , Cognição/efeitos dos fármacos , Levetiracetam/uso terapêutico , Convulsões , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/complicações , Estudos Cross-Over , Método Duplo-Cego , Função Executiva/efeitos dos fármacos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Convulsões/etiologia
13.
Front Hum Neurosci ; 14: 118, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32317952

RESUMO

Objective: The adult brain's potential for plastic reorganization is an important mechanism for the preservation and restoration of function in patients with primary glial neoplasm. Patients with recurrent brain tumors requiring multiple interventions over time present an opportunity to examine brain reorganization. Magnetoencephalography (MEG) is a noninvasive imaging modality that can be used for motor cortical network mapping which, when performed at regular intervals, offers insight into this process of reorganization. Utilizing MEG-based motor mapping, we sought to characterize the reorganization of motor cortical networks over time in a cohort of 78 patients with recurrent glioma. Methods: MEG-based motor cortical maps were obtained by measuring event-related desynchronization (ERD) in ß-band frequency during unilateral index finger flexion. Each patient presented at our Department at least on two occasions for tumor resection due to tumor recurrence, and MEG-based motor mapping was performed as part of preoperative assessment before each surgical resection. Whole-brain activation patterns from first to second MEG scan (obtained before first and second surgery) were compared. Additionally, we calculated distances of activation peaks, which represent the location of the primary motor cortex (MC), to determine the magnitude of movement in motor eloquent areas between the first and second MEG scan. We also explored which demographic, anatomic, and pathological factors influence these shifts. Results: The whole-brain activation motor maps showed a subtle movement of the primary MC from first to second timepoint, as was confirmed by the determination of motor activation peaks. The shift of ipsilesional MC was directly correlated with a frontal-parietal tumor location (p < 0.001), presence of motor deficits (p = 0.021), and with a longer period between MEG scans (p = 0.048). Also, a disengagement of wide areas in the contralesional (ipsilateral to finger movement) hemisphere at the second time point was observed. Conclusions: MEG imaging is a sensitive method for depicting the plasticity of the motor cortical network. Although the location of the primary MC undergoes only subtle changes, appreciable shifts can occur in the setting of a stronger and longer impairment of the tumor on the MC. The ipsilateral hemisphere may serve as a reservoir for functional recovery.

14.
Front Hum Neurosci ; 14: 105, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32499685

RESUMO

Magnetoencephalographic imaging (MEGI) offers a non-invasive alternative for defining preoperative language lateralization in neurosurgery patients. MEGI indeed can be used for accurate estimation of language lateralization with a complex language task - auditory verb generation. However, since language function may vary considerably in patients with focal lesions, it is important to optimize MEGI for estimation of language function with other simpler language tasks. The goal of this study was to optimize MEGI laterality analyses for two such simpler language tasks that can have compliance from those with impaired language function: a non-word repetition (NWR) task and a picture naming (PN) task. Language lateralization results for these two tasks were compared to the verb-generation (VG) task. MEGI reconstruction parameters (regions and time windows) for NWR and PN were first defined in a presurgical training cohort by benchmarking these against laterality indices for VG. Optimized time windows and regions of interest (ROIs) for NWR and PN were determined by examining oscillations in the beta band (12-30 Hz) a marker of neural activity known to be concordant with the VG laterality index (LI). For NWR, additional ROIs include areas MTG/ITG and for both NWR and PN, the postcentral gyrus was included in analyses. Optimal time windows for NWR were defined as 650-850 ms (stimulus-locked) and -350 to -150 ms (response-locked) and for PN -450 to -250 ms (response-locked). To verify the optimal parameters defined in our training cohort for NWR and PN, we examined an independent validation cohort (n = 30 for NWR, n = 28 for PN) and found high concordance between VG laterality and PN laterality (82%) and between VG laterality and NWR laterality (87%). Finally, in a test cohort (n = 8) that underwent both the intracarotid amobarbital procedure (IAP) test and MEG for VG, NWR, and PN, we identified excellent concordance (100%) with IAP for VG + NWR + PN composite LI, high concordance for PN alone (87.5%), and moderate concordance for NWR alone (66.7%). These findings provide task options for non-invasive language mapping with MEGI that can be calibrated for language abilities of individual patients. Results also demonstrate that more accurate estimates can be obtained by combining laterality estimates obtained from multiple tasks. MEGI.

15.
Ann Neurol ; 63(2): 193-203, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17894381

RESUMO

OBJECTIVE: The spatial distribution of functional connectivity between brain areas and the disturbance introduced by focal brain lesions are poorly understood. Based on the rationale that damaged brain tissue is disconnected from the physiological interactions among healthy areas, this study aimed to map the functionality of brain areas according to their connectivity with other areas. METHODS: Magnetoencephalography recordings of spontaneous cortical activity during resting state were obtained from 15 consecutive patients with focal brain lesions and from 14 healthy control subjects. Neural activity in the brain was estimated using an adaptive spatial filtering technique. The mean imaginary coherence between brain voxels was then calculated as an index of functional connectivity. RESULTS: Imaginary coherence was greatest in the alpha frequency range corresponding to the human cortical idling rhythm. In healthy subjects, functionally critical brain areas such as the somatosensory and language cortices had the highest alpha coherence. When compared with healthy control subjects, all lesion patients had diffuse or scattered brain areas with decreased alpha coherence. Patients with lesion-induced neurological deficits displayed decreased connectivity estimates in the corresponding brain area compared with intact contralateral regions. In tumor patients without preoperative neurological deficits, brain areas showing decreased coherence could be surgically resected without the occurrence of postoperative deficits. INTERPRETATION: Resting state coherence measured with magnetoencephalography is capable of mapping the functional connectivity of the brain, and can therefore offer valuable information for use in planning resective surgeries in patients with brain lesions, as well as investigations into structural-functional relationships in healthy subjects.


Assuntos
Mapeamento Encefálico/métodos , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/fisiopatologia , Córtex Cerebral/fisiopatologia , Magnetoencefalografia/métodos , Vias Neurais/fisiopatologia , Adulto , Idoso , Algoritmos , Neoplasias Encefálicas/patologia , Córtex Cerebral/patologia , Potenciais Evocados/fisiologia , Feminino , Lateralidade Funcional/fisiologia , Humanos , Processamento de Imagem Assistida por Computador/métodos , Masculino , Pessoa de Meia-Idade , Vias Neurais/patologia , Procedimentos Neurocirúrgicos/normas , Valor Preditivo dos Testes , Cuidados Pré-Operatórios/métodos , Estudos Retrospectivos
16.
Sci Rep ; 9(1): 5686, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30952883

RESUMO

Accurate integration of sensory inputs and motor commands is essential to achieve successful behavioral goals. A robust model of sensorimotor integration is the pitch perturbation response, in which speakers respond rapidly to shifts of the pitch in their auditory feedback. In a previous study, we demonstrated abnormal sensorimotor integration in patients with Alzheimer's disease (AD) with an abnormally enhanced behavioral response to pitch perturbation. Here we examine the neural correlates of the abnormal pitch perturbation response in AD patients, using magnetoencephalographic imaging. The participants phonated the vowel /α/ while a real-time signal processor briefly perturbed the pitch (100 cents, 400 ms) of their auditory feedback. We examined the high-gamma band (65-150 Hz) responses during this task. AD patients showed significantly reduced left prefrontal activity during the early phase of perturbation and increased right middle temporal activity during the later phase of perturbation, compared to controls. Activity in these brain regions significantly correlated with the behavioral response. These results demonstrate that impaired prefrontal modulation of speech-motor-control network and additional recruitment of right temporal regions are significant mediators of aberrant sensorimotor integration in patients with AD. The abnormal neural integration mechanisms signify the contribution of cortical network dysfunction to cognitive and behavioral deficits in AD.


Assuntos
Doença de Alzheimer/fisiopatologia , Encéfalo/fisiopatologia , Retroalimentação Sensorial/fisiologia , Fala/fisiologia , Estimulação Acústica/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fonação/fisiologia , Percepção da Altura Sonora/fisiologia
17.
J Neurosurg ; 109(2): 228-37, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18671634

RESUMO

OBJECT: The goal of this study was to examine the sensitivity and specificity in preoperative localization of hand motor cortex by imaging regional event-related desynchronization (ERD) of brainwaves in the beta frequency band (15-25 Hz) involved in self-paced movement. METHODS: Using magnetoencephalography (MEG), the authors measured ERD that occurred before self-paced unilateral index finger flexion in 66 patients with brain tumors, epilepsy, and arteriovenous malformations. RESULTS: The authors applied an adaptive spatial filtering algorithm to MEG data and found that peaks of the tomographic distribution of beta-band ERD sources reliably localized hand motor cortex compared with electrical cortical stimulation. They also observed high specificity in estimating contralateral hand motor cortical representations relative to somatosensory cortex. Neither presence nor location of tumor changed the qualitative or quantitative location of motor cortex relative to somatosensory cortex. CONCLUSIONS: An imaging protocol using ERD obtained by adaptive spatial filtering of MEG data can be used for extremely reliable preoperative localization of hand motor cortex.


Assuntos
Mapeamento Encefálico/métodos , Neoplasias Encefálicas/cirurgia , Magnetoencefalografia/normas , Córtex Motor/fisiologia , Cuidados Pré-Operatórios/normas , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Potencial Evocado Motor , Feminino , Dedos/inervação , Dedos/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Movimento , Reprodutibilidade dos Testes , Estudos Retrospectivos , Sensibilidade e Especificidade , Córtex Somatossensorial/fisiologia
18.
J Neurosurg ; 107(3): 481-7, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17886544

RESUMO

OBJECT: Before resective brain surgery, localization of the functional regions is necessary to minimize postoperative deficits. The face area has been relatively difficult to map noninvasively by using functional imaging techniques. Preoperative localization of face somatosensory cortex with magnetoencephalography (MEG) may allow the surgeon to predict the location of mouth motor areas. METHODS: The authors compared the location of face somatosensory cortex obtained with somatosensory evoked fields during preoperative MEG with the mouth motor areas identified during intraoperative electrocortical stimulation (ECS) mapping in 13 patients undergoing resection of brain tumor. RESULTS: In this group of patients, ECS mouth motor sites were usually anterior and lateral to MEG localizations of lip somatosensory cortex. The consistent quantitative relationship between results of these two mapping procedures allows the practitioner to predict the location of mouth motor cortex based on noninvasive preoperative MEG measurements. CONCLUSIONS: Based on this result, the authors suggest that somatosensory mapping using MEG can be used to guide intraoperative mapping and neurosurgical planning.


Assuntos
Mapeamento Encefálico/métodos , Neoplasias Encefálicas/fisiopatologia , Potenciais Somatossensoriais Evocados/fisiologia , Glioma/fisiopatologia , Magnetoencefalografia , Córtex Motor/fisiopatologia , Boca/fisiopatologia , Adulto , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/cirurgia , Feminino , Glioma/patologia , Glioma/cirurgia , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Estudos Retrospectivos
19.
Neurobiol Aging ; 52: 71-80, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28131013

RESUMO

Speakers respond automatically and rapidly to compensate for brief perturbations of pitch in their auditory feedback. The specific adjustments in vocal output require integration of brain regions involved in speech-motor-control in order to detect the sensory-feedback error and implement the motor correction. Cortical regions involved in the pitch reflex phenomenon are highly vulnerable targets of network disruption in Alzheimer's disease (AD). We examined the pitch reflex in AD patients (n = 19) compared to an age-matched control group (n = 16). We measured the degree of behavioral compensation (peak compensation) and the extent of the adaptive response (pitch-response persistence). Healthy-controls reached a peak compensation of 18.7 ± 0.8 cents, and demonstrated a sustained compensation at 8.9 ± 0.69 cents. AD patients, in contrast, demonstrated a significantly elevated peak compensation (22.4 ± 1.2 cents, p < 0.05), and a reduced sustained response (pitch-response persistence, 4.5 ± 0.88 cents, p < 0.001). The degree of increased peak compensation predicted executive dysfunction, while the degree of impaired pitch-response persistence predicted memory dysfunction, in AD patients. The current study demonstrates pitch reflex as a sensitive behavioral index of impaired prefrontal modulation of sensorimotor integration, and compromised plasticity mechanisms of memory, in AD.


Assuntos
Doença de Alzheimer/fisiopatologia , Doença de Alzheimer/psicologia , Função Executiva , Retroalimentação Sensorial/fisiologia , Transtornos da Memória/fisiopatologia , Transtornos da Memória/psicologia , Memória , Percepção da Altura Sonora/fisiologia , Córtex Pré-Frontal/fisiopatologia , Reflexo/fisiologia , Fala/fisiologia , Comportamento Verbal/fisiologia , Idoso , Feminino , Previsões , Humanos , Masculino , Pessoa de Meia-Idade
20.
Front Hum Neurosci ; 11: 259, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28603492

RESUMO

This study compared magnetoencephalographic (MEG) imaging-derived indices of auditory and somatosensory cortical processing in children aged 8-12 years with autism spectrum disorder (ASD; N = 18), those with sensory processing dysfunction (SPD; N = 13) who do not meet ASD criteria, and typically developing control (TDC; N = 19) participants. The magnitude of responses to both auditory and tactile stimulation was comparable across all three groups; however, the M200 latency response from the left auditory cortex was significantly delayed in the ASD group relative to both the TDC and SPD groups, whereas the somatosensory response of the ASD group was only delayed relative to TDC participants. The SPD group did not significantly differ from either group in terms of somatosensory latency, suggesting that participants with SPD may have an intermediate phenotype between ASD and TDC with regard to somatosensory processing. For the ASD group, correlation analyses indicated that the left M200 latency delay was significantly associated with performance on the WISC-IV Verbal Comprehension Index as well as the DSTP Acoustic-Linguistic index. Further, these cortical auditory response delays were not associated with somatosensory cortical response delays or cognitive processing speed in the ASD group, suggesting that auditory delays in ASD are domain specific rather than associated with generalized processing delays. The specificity of these auditory delays to the ASD group, in addition to their correlation with verbal abilities, suggests that auditory sensory dysfunction may be implicated in communication symptoms in ASD, motivating further research aimed at understanding the impact of sensory dysfunction on the developing brain.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa