Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Cancer ; 24(1): 146, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287346

RESUMO

BACKGROUND: Life expectancy of patients with metastatic castration-resistant prostate cancer (mCRPC) is still limited despite several systemic treatments. Within five years after diagnosis of primary prostate cancer, 10-20% of the patients have mCRPC and curation is not an option. Radionuclide therapy (RNT) targeted against prostate-specific membrane antigen (PSMA) emerged as a new treatment option and showed effective results in patients with mCRPC. Survival benefit after [177Lu]Lu-PSMA RNT has already been demonstrated in several clinical trials. However, [225Ac]Ac-PSMA (225Ac-PSMA) appears to be an even more promising radiopharmaceutical for the treatment of mCRPC. The use of alpha emitting radionuclides offers advantages over beta emitting radionuclides due to the high linear energy transfer effective for killing tumor cells and the limited range to reduce the radiation effects on the healthy tissue. However, these results are based on retrospective data and safety data of 225Ac-PSMA are still limited. Therefore, a prospective trial is needed to determine the optimal amount of activity that can be administered. METHODS: The 225Ac-PSMA-Imaging & Therapy (I&T) trial is an investigator-initiated phase I, single-center, open label, repeated dose-escalation and expansion trial. Patient with PSMA-positive mCRPC after at least one line of chemotherapy and/or one line of nonsteroidal antiandrogen will be treated with 225Ac-PSMA-I&T in increasing amount of activity per cycle. Dose-escalation following an accelerated 3 + 3 design which allows to open the next dose-level cohort in the absence of dose limiting toxicity while the previous one is still ongoing. Up to 4 treatment cohorts will be explored including up to 3 dose-escalation cohorts and one expansion cohort where patients will be administered with the recommended dose. A total of up to 30 patients will be enrolled in this trial. All patients will be evaluated for safety. Additionally, dosimetry was performed for the patients in the dose-escalation cohorts after the first 225Ac-PSMA-I&T administration. DISCUSSION: This trial will assess the safety and tolerability of 225Ac-PSMA-I&T in patients with mCRPC to recommend the optimal dose for the phase II trial. TRIAL REGISTRATION: ClinicalTrials.gov, (NCT05902247). Retrospectively registered 13 June 2023.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Antígeno Prostático Específico , Estudos Prospectivos , Estudos Retrospectivos , Dipeptídeos/efeitos adversos , Radioisótopos/uso terapêutico , Compostos Radiofarmacêuticos/efeitos adversos , Compostos Heterocíclicos com 1 Anel , Resultado do Tratamento
2.
EJNMMI Radiopharm Chem ; 9(1): 9, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319526

RESUMO

BACKGROUND: In the past years, there has been a notable increase in interest regarding targeted alpha therapy using Ac-225, driven by the observed promising clinical anti-tumor effects. As the production and technology has advanced, the availability of Ac-225 is expected to increase in the near future, making the treatment available to patients worldwide. MAIN BODY: Ac-225 can be labelled to different biological vectors, whereby the success of developing a radiopharmaceutical depends heavily on the labelling conditions, purity of the radionuclide source, chelator, and type of quenchers used to avoid radiolysis. Multiple (methodological) challenges need to be overcome when working with Ac-225; as alpha-emission detection is time consuming and highly geometry dependent, a gamma co-emission is used, but has to be in equilibrium with the mother-nuclide. Because of the high impact of alpha emitters in vivo it is highly recommended to cross-calibrate the Ac-225 measurements for used quality control (QC) techniques (radio-TLC, HPLC, HP-Ge detector, and gamma counter). More strict health physics regulations apply, as Ac-225 has a high toxicity, thereby limiting practical handling and quantities used for QC analysis. CONCLUSION: This overview focuses specifically on the practical and methodological challenges when working with Ac-225 labelled radiopharmaceuticals, and underlines the required infrastructure and (detection) methods for the (pre-)clinical application.

3.
Pharmaceutics ; 14(10)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36297601

RESUMO

For patients with metastatic castration-resistant prostate cancer (mCRPC), the survival benefit of classic treatment options with chemotherapy and drugs targeting androgen signaling is limited. Therefore, beta and alpha radionuclide therapy (RNT) have emerged as novel treatment options for patients with mCRPC. Radioligands target the prostate-specific membrane antigen (PSMA) epitopes, which are upregulated up to a thousand times more in prostate cancer cells compared to the cells in normal tissues. For this reason, PSMA is an excellent target for both imaging and therapy. Over the past years, many studies have investigated the treatment effects of lutetium-177 labeled PSMA (177Lu-PSMA) and actinium-225 labeled PSMA (225Ac-PSMA) RNT in patients with mCRPC. While promising results have been achieved, this field is still in development. In this review, we have summarized and discussed the clinical data of 177Lu-PSMA and 225Ac-PSMA RNT in patients with mCRPC.

4.
EJNMMI Radiopharm Chem ; 7(1): 29, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36333648

RESUMO

BACKGROUND: Radiopharmaceuticals are considered as regular medicinal products and therefore the same regulations as for non-radioactive medicinal products apply. However, specific aspects should be considered due to the radiochemical properties. Radiopharmaceutical dedicated monographs are developed in the European Pharmacopoeia to address this. Currently, different quality control methods for non-registered radiopharmaceuticals are utilized, often focusing on radio-TLC only, which has its limitations. When the radiochemical yield (RCY) is measured by radio-TLC analysis, degradation products caused by radiolysis are frequently not detected. In contrast, HPLC analysis defines the radiochemical purity (RCP), allowing for detection of peak formation related to radiolysis. During the introduction and optimization phase of therapeutic radiopharmaceuticals, significant percentages of impurities, like radiolysed construct formation, may have consequential impact on patient treatment. Since more hospitals and institutes are offering radiopharmaceutical therapies, such as [177Lu]Lu-PSMA with an in-house production, the demand for adequate quality control is increasing. Here we show the optimization and implementation of a therapeutic radiopharmaceutical, including the comparison of ITLC and HPLC quality control. RESULTS: Downscaled conditions (74 MBq/µg) were in concordance to clinical conditions (18 GBq/250 µg, 5 mL syringe/100 mL flacon); all results were consistent with an > 98% RCY (radio-TLC) and stability of > 95% RCP (HPLC). Radio-TLC did not identify radiolysis peaks, while clear identification was performed by HPLC analysis. Decreasing the RCP with 50%, reduced the cell-binding capacity with 27%. CONCLUSION: This research underlines the importance of the radiolabeling and optimization including clinical implementation and clarifies the need for cross-validation of the RCY and RCP for quality control measurements. Only HPLC analysis is suitable for identification of radiolysis. Here we have proven that radiolysed [177Lu]Lu-PSMA has less binding affinity and thus likely will influence treatment efficacy. HPLC analysis is therefore essential to include in at least the validation phase of radiopharmaceutical implementation to ensure clinical treatment quality.

5.
Pharmaceutics ; 13(5)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34068206

RESUMO

Recently, promising results of the antitumor effects were observed in patients with metastatic castration-resistant prostate cancer treated with 177Lu-labeled PSMA-ligands. Radionuclide therapy efficacy may even be improved by using the alpha emitter Ac-225. Higher efficacy is claimed due to high linear energy transfer specifically towards PSMA positive cells, causing more double-strand breaks. This study aims to manufacture [225Ac]Ac-PSMA-I&T according to good manufacturing practice guidelines for the translation of [225Ac]Ac-PSMA-I&T into a clinical phase 1 dose escalation study. Quencher addition during labeling was investigated. Quality control of [225Ac]Ac-PSMA-I&T was based on measurement of Fr-221 (218 keV), in equilibrium with Ac-225 in approximately six half-lives of Fr-221 (T½ = 4.8 min). Radio-(i)TLC methods were utilized for identification of the different radiochemical forms, gamma counter for concentration determination, and HPGe-detector for the detection of the radiochemical yield. Radiochemical purity was determined by HPLC. The final patient dose was prepared and diluted with an optimized concentration of quenchers as during labeling, with an activity of 8-12 MBq (±5%), pH > 5.5, 100 ± 20 µg/dose, PSMA-I&T, radiochemical yield >95%, radiochemical purity >90% (up to 3 h), endotoxin levels of <5 EU/mL, osmolarity of 2100 mOsmol, and is produced according to current guidelines. The start of the phase I dose escalation study is planned in the near future.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa