Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genet Med ; 23(2): 352-362, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33106617

RESUMO

PURPOSE: Neurodevelopmental disorders (NDD) caused by protein phosphatase 2A (PP2A) dysfunction have mainly been associated with de novo variants in PPP2R5D and PPP2CA, and more rarely in PPP2R1A. Here, we aimed to better understand the latter by characterizing 30 individuals with de novo and often recurrent variants in this PP2A scaffolding Aα subunit. METHODS: Most cases were identified through routine clinical diagnostics. Variants were biochemically characterized for phosphatase activity and interaction with other PP2A subunits. RESULTS: We describe 30 individuals with 16 different variants in PPP2R1A, 21 of whom had variants not previously reported. The severity of developmental delay ranged from mild learning problems to severe intellectual disability (ID) with or without epilepsy. Common features were language delay, hypotonia, and hypermobile joints. Macrocephaly was only seen in individuals without B55α subunit-binding deficit, and these patients had less severe ID and no seizures. Biochemically more disruptive variants with impaired B55α but increased striatin binding were associated with profound ID, epilepsy, corpus callosum hypoplasia, and sometimes microcephaly. CONCLUSION: We significantly expand the phenotypic spectrum of PPP2R1A-related NDD, revealing a broader clinical presentation of the patients and that the functional consequences of the variants are more diverse than previously reported.


Assuntos
Deficiência Intelectual , Microcefalia , Transtornos do Neurodesenvolvimento , Humanos , Deficiência Intelectual/genética , Hipotonia Muscular , Transtornos do Neurodesenvolvimento/epidemiologia , Transtornos do Neurodesenvolvimento/genética , Proteína Fosfatase 2/genética , Fatores de Transcrição
2.
Cancer Res ; 76(19): 5719-5731, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27485451

RESUMO

Somatic missense mutations in the Ser/Thr protein phosphatase 2A (PP2A) Aα scaffold subunit gene PPP2R1A are among the few genomic alterations that occur frequently in serous endometrial carcinoma (EC) and carcinosarcoma, two clinically aggressive subtypes of uterine cancer with few therapeutic options. Previous studies reported that cancer-associated Aα mutants exhibit defects in binding to other PP2A subunits and contribute to cancer development by a mechanism of haploinsufficiency. Here we report on the functional significance of the most recurrent PPP2R1A mutations in human EC, which cluster in Aα HEAT repeats 5 and 7. Beyond predicted loss-of-function effects on the formation of a subset of PP2A holoenzymes, we discovered that Aα mutants behave in a dominant-negative manner due to gain-of-function interactions with the PP2A inhibitor TIPRL1. Dominant-negative Aα mutants retain binding to specific subunits of the B56/B' family and form substrate trapping complexes with impaired phosphatase activity via increased recruitment of TIPRL1. Accordingly, overexpression of the Aα mutants in EC cells harboring wild-type PPP2R1A increased anchorage-independent growth and tumor formation, and triggered hyperphosphorylation of oncogenic PP2A-B56/B' substrates in the GSK3ß, Akt, and mTOR/p70S6K signaling pathways. TIPRL1 silencing restored GSK3ß phosphorylation and rescued the EC cell growth advantage. Our results reveal how PPP2R1A mutations affect PP2A function and oncogenic signaling, illuminating the genetic basis for serous EC development and its potential control by rationally targeted therapies. Cancer Res; 76(19); 5719-31. ©2016 AACR.


Assuntos
Cistadenocarcinoma Seroso/genética , Neoplasias do Endométrio/genética , Mutação de Sentido Incorreto , Proteína Fosfatase 2/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células , Cistadenocarcinoma Seroso/etiologia , Cistadenocarcinoma Seroso/patologia , Neoplasias do Endométrio/etiologia , Neoplasias do Endométrio/patologia , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Camundongos , Proteínas Quinases S6 Ribossômicas 70-kDa/fisiologia , Serina-Treonina Quinases TOR/fisiologia
3.
Front Oncol ; 4: 347, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25566494

RESUMO

Reversible protein phosphorylation plays a crucial role in regulating cell signaling. In normal cells, phosphoregulation is tightly controlled by a network of protein kinases counterbalanced by several protein phosphatases. Deregulation of this delicate balance is widely recognized as a central mechanism by which cells escape external and internal self-limiting signals, eventually resulting in malignant transformation. A large fraction of hematologic malignancies is characterized by constitutive or unrestrained activation of oncogenic kinases. This is in part achieved by activating mutations, chromosomal rearrangements, or constitutive activation of upstream kinase regulators, in part by inactivation of their anti-oncogenic phosphatase counterparts. Protein phosphatase 2A (PP2A) represents a large family of cellular serine/threonine phosphatases with suspected tumor suppressive functions. In this review, we highlight our current knowledge about the complex structure and biology of these phosphatases in hematologic cells, thereby providing the rationale behind their diverse signaling functions. Eventually, this basic knowledge is a key to truly understand the tumor suppressive role of PP2A in leukemogenesis and to allow further rational development of therapeutic strategies targeting PP2A.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa