Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Transgenic Res ; 24(5): 821-36, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25894660

RESUMO

Pierce's disease (PD) caused by Xylella fastidiosa prevents cultivation of grapevine (Vitis vinifera) and susceptible hybrids in the southeastern United States and poses a major threat to the grape industry of California and Texas. Genetic resistance is the only proven control of X. fastidiosa. Genetic engineering offers an alternative to heretofore ineffective conventional breeding in order to transfer only PD resistance traits into elite cultivars. A synthetic gene encoding lytic peptide LIMA-A was introduced into V. vinifera and a Vitis hybrid to assess in planta inhibition of X. fastidiosa. Over 1050 independent transgenic plant lines were evaluated in the greenhouse, among which nine lines were selected and tested under naturally-inoculated field conditions. These selected plant lines in the greenhouse remain disease-free for 10 years, to date, even with multiple manual pathogen inoculations. However, all these lines in the field, including a grafted transgenic rootstock, succumbed to PD within 7 years. We conclude that in planta production of antimicrobial lytic peptides does not provide durable PD resistance to grapevine under field conditions.


Assuntos
Anti-Infecciosos/metabolismo , Peptídeos/genética , Vitis/microbiologia , Sequência de Aminoácidos , Dados de Sequência Molecular , Peptídeos/química , Xilema/microbiologia
2.
Appl Environ Microbiol ; 80(3): 1159-69, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24296499

RESUMO

The bacterial pathogen Xylella fastidiosa infects xylem and causes disease in many plant species in the Americas. Different subspecies of this bacterium and different genotypes within subspecies infect different plant hosts, but the genetics of host adaptation are unknown. Here we examined the hypothesis that the introduction of novel genetic variation via intersubspecific homologous recombination (IHR) facilitates host shifts. We investigated IHR in 33 X. fastidiosa subsp. multiplex isolates previously identified as recombinant based on 8 loci (7 multilocus sequence typing [MLST] loci plus 1 locus). We found significant evidence of introgression from X. fastidiosa subsp. fastidiosa in 4 of the loci and, using published data, evidence of IHR in 6 of 9 additional loci. Our data showed that IHR regions in 2 of the 4 loci were inconsistent (12 mismatches) with X. fastidiosa subsp. fastidiosa alleles found in the United States but consistent with alleles from Central America. The other two loci were consistent with alleles from both regions. We propose that the recombinant forms all originated via genomewide recombination of one X. fastidiosa subsp. multiplex ancestor with one X. fastidiosa subsp. fastidiosa donor from Central America that was introduced into the United States but subsequently disappeared. Using all of the available data, 5 plant hosts of the recombinant types were identified, 3 of which also supported non-IHR X. fastidiosa subsp. multiplex, but 2 were unique to recombinant types from blueberry (7 isolates from Georgia, 3 from Florida); and blackberry (1 each from Florida and North Carolina), strongly supporting the hypothesis that IHR facilitated a host shift to blueberry and possibly blackberry.


Assuntos
Recombinação Homóloga , Doenças das Plantas/microbiologia , Xylella/genética , Alelos , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , Evolução Molecular , Variação Genética , Humanos , Tipagem de Sequências Multilocus , Homologia de Sequência , Estados Unidos , Xylella/classificação
3.
J Bacteriol ; 193(19): 5576-7, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21914886

RESUMO

Xylella fastidiosa infects a wide range of plant hosts and causes economically serious diseases, including Pierce's disease (PD) of grapevines. X. fastidiosa biocontrol strain EB92-1 is infectious to grapevines but does not cause symptoms. The draft genome of EB92-1 reveals that it may be missing 10 potential pathogenicity effectors.


Assuntos
Genoma Bacteriano/genética , Doenças das Plantas/microbiologia , Xylella/genética , Dados de Sequência Molecular , Xylella/patogenicidade
5.
PLoS One ; 10(7): e0133796, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26218423

RESUMO

Xylella fastidiosa (X. fastidiosa) infects a wide range of plant hosts and causes economically serious diseases, including Pierce's Disease (PD) of grapevines. X. fastidiosa biocontrol strain EB92-1 was isolated from elderberry and is infectious and persistent in grapevines but causes only very slight symptoms under ideal conditions. The draft genome of EB92-1 revealed that it appeared to be missing genes encoding 10 potential PD pathogenicity effectors found in Temecula1. Subsequent PCR and sequencing analyses confirmed that EB92-1 was missing the following predicted effectors found in Temecula1: two type II secreted enzymes, including a lipase (LipA; PD1703) and a serine protease (PD0956); two identical genes encoding proteins similar to Zonula occludens toxins (Zot; PD0915 and PD0928), and at least one relatively short, hemagglutinin-like protein (PD0986). Leaves of tobacco and citrus inoculated with cell-free, crude protein extracts of E. coli BL21(DE3) overexpressing PD1703 exhibited a hypersensitive response (HR) in less than 24 hours. When cloned into shuttle vector pBBR1MCS-5, PD1703 conferred strong secreted lipase activity to Xanthomonas citri, E. coli and X. fastidiosa EB92-1 in plate assays. EB92-1/PD1703 transformants also showed significantly increased disease symptoms on grapevines, characteristic of PD. Genes predicted to encode PD0928 (Zot) and a PD0986 (hemagglutinin) were also cloned into pBBR1MCS-5 and moved into EB92-1; both transformants also showed significantly increased symptoms on V. vinifera vines, characteristic of PD. Together, these results reveal that PD effectors include at least a lipase, two Zot-like toxins and a possibly redundant hemagglutinin, none of which are necessary for parasitic survival of X. fastidiosa populations in grapevines or elderberry.


Assuntos
Proteínas de Bactérias , Genoma Bacteriano , Doenças das Plantas/microbiologia , Sambucus/microbiologia , Fatores de Virulência , Vitis/microbiologia , Xylella , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Xylella/genética , Xylella/metabolismo , Xylella/patogenicidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa