RESUMO
AIMS: P-selectin is an activatable adhesion molecule on platelets promoting platelet aggregation, and platelet-leukocyte complex (PLC) formation. Increased numbers of PLC are circulating in the blood of patients shortly after acute myocardial infarction and predict adverse outcomes. These correlations led to speculations about whether PLC may represent novel therapeutic targets. We therefore set out to elucidate the pathomechanistic relevance of PLC in myocardial ischemia and reperfusion injury. METHODS AND RESULTS: By generating P-selectin deficient bone marrow chimeric mice, the post-myocardial infarction surge in PLC numbers in blood was prevented. Yet, intravital microscopy, flow cytometry and immunohistochemical staining, echocardiography, and gene expression profiling showed unequivocally that leukocyte adhesion to the vessel wall, leukocyte infiltration, and myocardial damage post-infarction were not altered in response to the lack in PLC. CONCLUSION: We conclude that myocardial infarction associated sterile inflammation triggers PLC formation, reminiscent of conserved immunothrombotic responses, but without PLC influencing myocardial ischemia and reperfusion injury in return. Our experimental data do not support a therapeutic concept of selectively targeting PLC formation in myocardial infarction.
Assuntos
Infarto do Miocárdio , Isquemia Miocárdica , Traumatismo por Reperfusão Miocárdica , Traumatismo por Reperfusão , Camundongos , Animais , Selectina-P/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Leucócitos , Infarto do Miocárdio/metabolismo , Traumatismo por Reperfusão/metabolismo , Isquemia Miocárdica/metabolismoRESUMO
Objective: The accumulation of inflammatory leukocytes is a prerequisite of adipose tissue inflammation during cardiometabolic disease. We previously reported that a genetic deficiency of the intracellular signaling adaptor TRAF5 (TNF [tumor necrosis factor] receptor-associated factor 5) accelerates atherosclerosis in mice by increasing inflammatory cell recruitment. Here, we tested the hypothesis that an impairment of TRAF5 signaling modulates adipose tissue inflammation and its metabolic complications in a model of diet-induced obesity in mice. Approach and Results: To induce diet-induced obesity and adipose tissue inflammation, wild-type or Traf5-/- mice consumed a high-fat diet for 18 weeks. Traf5-/- mice showed an increased weight gain, impaired insulin tolerance, and increased fasting blood glucose. Weight of livers and peripheral fat pads was increased in Traf5-/- mice, whereas lean tissue weight and growth were not affected. Flow cytometry of the stromal vascular fraction of visceral adipose tissue from Traf5-/- mice revealed an increase in cytotoxic T cells, CD11c+ macrophages, and increased gene expression of proinflammatory cytokines and chemokines. At the level of cell types, expression of TNF[alpha], MIP (macrophage inflammatory protein)-1[alpha], MCP (monocyte chemoattractant protein)-1, and RANTES (regulated on activation, normal T-cell expressed and secreted) was significantly upregulated in Traf5-deficient adipocytes but not in Traf5-deficient leukocytes from visceral adipose tissue. Finally, Traf5 expression was lower in adipocytes from obese patients and mice and recovered in adipose tissue of obese patients one year after bariatric surgery. Conclusions: We show that a genetic deficiency of TRAF5 in mice aggravates diet-induced obesity and its metabolic derangements by a proinflammatory response in adipocytes. Our data indicate that TRAF5 may promote anti-inflammatory and obesity-preventing signaling events in adipose tissue.
Assuntos
Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Linfócitos/metabolismo , Obesidade/metabolismo , Paniculite/metabolismo , Fator 5 Associado a Receptor de TNF/deficiência , Adipócitos/imunologia , Adipócitos/patologia , Tecido Adiposo/imunologia , Tecido Adiposo/patologia , Adiposidade , Adulto , Idoso , Animais , Dieta Hiperlipídica , Modelos Animais de Doenças , Feminino , Humanos , Linfócitos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Obesidade/genética , Obesidade/imunologia , Obesidade/patologia , Paniculite/genética , Paniculite/imunologia , Paniculite/patologia , Transdução de Sinais , Fator 5 Associado a Receptor de TNF/genéticaRESUMO
Statins induce plaque regression characterized by reduced macrophage content in humans, but the underlying mechanisms remain speculative. Studying the translational APOE*3-Leiden.CETP mouse model with a humanized lipoprotein metabolism, we find that systemic cholesterol lowering by oral atorvastatin or dietary restriction inhibits monocyte infiltration, and reverses macrophage accumulation in atherosclerotic plaques. Contrary to current believes, none of (1) reduced monocyte influx (studied by cell fate mapping in thorax-shielded irradiation bone marrow chimeras), (2) enhanced macrophage egress (studied by fluorescent bead labeling and transfer), or (3) atorvastatin accumulation in murine or human plaque (assessed by mass spectrometry) could adequately account for the observed loss in macrophage content in plaques that undergo phenotypic regression. Instead, suppression of local proliferation of macrophages dominates phenotypic plaque regression in response to cholesterol lowering: the lower the levels of serum LDL-cholesterol and lipid contents in murine aortic and human carotid artery plaques, the lower the rates of in situ macrophage proliferation. Our study identifies macrophage proliferation as the predominant turnover determinant and an attractive target for inducing plaque regression.
Assuntos
Aterosclerose/terapia , Atorvastatina/farmacologia , Proliferação de Células/efeitos dos fármacos , LDL-Colesterol/sangue , Dieta com Restrição de Gorduras , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Macrófagos/efeitos dos fármacos , Placa Aterosclerótica , Animais , Apolipoproteína E3/genética , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Biomarcadores/sangue , Proteínas de Transferência de Ésteres de Colesterol/genética , Modelos Animais de Doenças , Regulação para Baixo , Feminino , Humanos , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Receptores de LDL/genéticaRESUMO
RATIONALE: Atherosclerosis is a chronic inflammatory disease that is driven by the interplay of pro- and anti-inflammatory leukocytes in the aorta. Yet, the phenotypic and transcriptional diversity of aortic leukocytes is poorly understood. OBJECTIVE: We characterized leukocytes from healthy and atherosclerotic mouse aortas in-depth by single-cell RNA-sequencing and mass cytometry (cytometry by time of flight) to define an atlas of the immune cell landscape in atherosclerosis. METHODS AND RESULTS: Using single-cell RNA-sequencing of aortic leukocytes from chow diet- and Western diet-fed Apoe-/- and Ldlr-/- mice, we detected 11 principal leukocyte clusters with distinct phenotypic and spatial characteristics while the cellular repertoire in healthy aortas was less diverse. Gene set enrichment analysis on the single-cell level established that multiple pathways, such as for lipid metabolism, proliferation, and cytokine secretion, were confined to particular leukocyte clusters. Leukocyte populations were differentially regulated in atherosclerotic Apoe-/- and Ldlr-/- mice. We confirmed the phenotypic diversity of these clusters with a novel mass cytometry 35-marker panel with metal-labeled antibodies and conventional flow cytometry. Cell populations retrieved by these protein-based approaches were highly correlated to transcriptionally defined clusters. In an integrated screening strategy of single-cell RNA-sequencing, mass cytometry, and fluorescence-activated cell sorting, we detected 3 principal B-cell subsets with alterations in surface markers, functional pathways, and in vitro cytokine secretion. Leukocyte cluster gene signatures revealed leukocyte frequencies in 126 human plaques by a genetic deconvolution strategy. This approach revealed that human carotid plaques and microdissected mouse plaques were mostly populated by macrophages, T-cells, and monocytes. In addition, the frequency of genetically defined leukocyte populations in carotid plaques predicted cardiovascular events in patients. CONCLUSIONS: The definition of leukocyte diversity by high-dimensional analyses enables a fine-grained analysis of aortic leukocyte subsets, reveals new immunologic mechanisms and cell-type-specific pathways, and establishes a functional relevance for lesional leukocytes in human atherosclerosis.
Assuntos
Doenças da Aorta/patologia , Aterosclerose/patologia , Leucócitos/patologia , Análise de Sequência de RNA/métodos , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Linfócitos B/patologia , Citometria de Fluxo/métodos , Humanos , Leucócitos/metabolismo , Macrófagos/patologia , Ilustração Médica , Camundongos , Monócitos/patologia , Fenótipo , Receptores de LDL/deficiência , Receptores de LDL/genética , Análise de Célula Única/métodos , Linfócitos T/patologia , TranscriptomaRESUMO
RATIONALE: The coincidence of inflammation and metabolic derangements in obese adipose tissue has sparked the concept of met-inflammation. Previous observations, however, suggest that inflammatory pathways may not ultimately cause dysmetabolism. OBJECTIVE: We have revisited the relationship between inflammation and metabolism by testing the role of TRAF (tumor necrosis receptor-associated factor)-1, an inhibitory adapter of inflammatory signaling of TNF (tumor necrosis factor)-α, IL (interleukin)-1ß, and TLRs (toll-like receptors). METHODS AND RESULTS: Mice deficient for TRAF-1, which is expressed in obese adipocytes and adipose tissue lymphocytes, caused an expected hyperinflammatory phenotype in adipose tissue with enhanced adipokine and chemokine expression, increased leukocyte accumulation, and potentiated proinflammatory signaling in macrophages and adipocytes in a mouse model of diet-induced obesity. Unexpectedly, TRAF-1-/- mice were protected from metabolic derangements and adipocyte growth, failed to gain weight, and showed improved insulin resistance-an effect caused by increased lipid breakdown in adipocytes and UCP (uncoupling protein)-1-enabled thermogenesis. TRAF-1-dependent catabolic and proinflammatory cues were synergistically driven by ß3-adrenergic and inflammatory signaling and required the presence of both TRAF-1-deficient adipocytes and macrophages. In human obesity, TRAF-1-dependent genes were upregulated. CONCLUSIONS: Enhancing TRAF-1-dependent inflammatory pathways in a gain-of-function approach protected from metabolic derangements in diet-induced obesity. These findings identify TRAF-1 as a regulator of dysmetabolism in mice and humans and question the pathogenic role of chronic inflammation in metabolism.
Assuntos
Metabolismo dos Lipídeos , Obesidade/genética , Fator 1 Associado a Receptor de TNF/genética , Adipócitos/metabolismo , Animais , Células Cultivadas , Dieta Hiperlipídica/efeitos adversos , Resistência à Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/metabolismo , Termogênese , Proteína Desacopladora 1/metabolismoRESUMO
Tumor necrosis factor (TNF) receptor-associated factors (TRAFs) are cytoplasmic adaptor proteins of the TNF/interleukin (IL)-1/Toll-like receptor superfamily. Ligands of this family such as TNFα, CD40L, and IL-1ß promote chronic inflammatory processes such as atherosclerosis and restenosis, the latter being a common adverse reaction after vascular interventions. We previously reported overexpression of TRAF5 in murine and human atheromata and TRAF5-dependent proinflammatory functions in vitro. However, the role of TRAF5 in restenosis remains unsettled. To evaluate whether TRAF5 affects neointima formation, TRAF5-/-LDLR-/- and TRAF5+/+LDLR-/- mice consuming a high cholesterol diet (HCD) received wire-induced injury of the carotid artery. After 28 days, TRAF5-deficient mice showed a 45% decrease in neointimal area formation compared with TRAF5-compentent mice. Furthermore, neointimal vascular smooth muscle cells (vSMC) and macrophages decreased whereas collagen increased in TRAF5-deficient mice. Mechanistically, the latter expressed lower transcript levels of the matrix metalloproteinases 2 and 9, both instrumental in extracellular matrix degradation and vSMC mobilization. Additionally, TRAF5-specific siRNA interference rendered murine vSMC less proliferative upon CD40L stimulation. In accordance with these findings, fewer vSMC isolated from TRAF5-deficient aortas were in a proliferative state as assessed by Ki67 and cyclin B1 expression. In conclusion, TRAF5 deficiency mitigates neointima formation in mice, likely through a TRAF5-dependent decrease in vSMC proliferation.
Assuntos
Doenças das Artérias Carótidas/metabolismo , Proliferação de Células , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Neointima , Fator 5 Associado a Receptor de TNF/metabolismo , Animais , Antígenos CD40/metabolismo , Artérias Carótidas/metabolismo , Artérias Carótidas/patologia , Doenças das Artérias Carótidas/genética , Doenças das Artérias Carótidas/patologia , Colesterol na Dieta , Modelos Animais de Doenças , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Placa Aterosclerótica , Receptores de LDL/genética , Receptores de LDL/metabolismo , Transdução de Sinais , Fator 5 Associado a Receptor de TNF/deficiência , Fator 5 Associado a Receptor de TNF/genéticaRESUMO
BACKGROUND: Extracellular adenosine triphosphate (ATP) binds as a danger signal to purinergic receptor P2X7 and promotes inflammasome assembly and interleukin-1ß expression. We hypothesized a functional role of the signal axis ATP-P2X7 in inflammasome activation and the chronic inflammation driving atherosclerosis. METHODS: P2X7-competent and P2X7-deficient macrophages were isolated and stimulated with lipopolysaccharide, ATP, or both. To assess whether P2X7 may have a role in atherosclerosis, P2X7 expression was analyzed in aortic arches from low density lipoprotein receptor-/- mice consuming a high-cholesterol or chow diet. P2X7+/+ and P2X7-/- low density lipoprotein receptor-/- mice were fed a high-cholesterol diet to investigate the functional role of P2X7 knockout in atherosclerosis. Human plaques were derived from carotid endarterectomy and stained against P2X7. RESULTS: Lipopolysaccharide or ATP stimulation alone did not activate caspase 1 in isolated macrophages. However, priming with lipopolysaccharide, followed by stimulation with ATP, led to an activation of caspase 1 and interleukin-1ß in P2X7-competent macrophages. In contrast, P2X7-deficient macrophages showed no activation of caspase 1 after sequential stimulation while still expressing a basal amount of interleukin-1ß. P2X7 receptor was higher expressed in murine atherosclerotic lesions, particularly by lesional macrophages. After 16 weeks of a high-cholesterol diet, P2X7-deficient mice showed smaller atherosclerotic lesions than P2X7-competent mice (0.162 cm2±0.023 [n=9], P2X7-/- low density lipoprotein receptor-/- : 0.084 cm2±0.01 [n=11], P=0.004) with a reduced amount of lesional macrophages. In accord with our in vitro findings, lesional caspase 1 activity was abolished in P2X7-/- mice. In addition, intravital microscopy revealed reduced leukocyte rolling and adhesion in P2X7-deficient mice. Last, we observe increased P2X7 expression in human atherosclerotic lesions, suggesting that our findings in mice are relevant for human disease. CONCLUSIONS: P2X7 deficiency resolved plaque inflammation by inhibition of lesional inflammasome activation and reduced experimental atherosclerosis. Therefore, P2X7 represents an interesting potential new target to combat atherosclerosis.
Assuntos
Aterosclerose/metabolismo , Aterosclerose/prevenção & controle , Inflamassomos/metabolismo , Receptores Purinérgicos P2X7/deficiência , Trifosfato de Adenosina/toxicidade , Animais , Aterosclerose/induzido quimicamente , Humanos , Inflamassomos/antagonistas & inibidores , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/prevenção & controle , Lipopolissacarídeos/toxicidade , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos KnockoutRESUMO
Sterile inflammation of visceral fat, provoked by dying adipocytes, links the metabolic syndrome to cardiovascular disease. Danger-associated molecular patterns, such as adenosine triphosphate (ATP), are released by activated or dying cells and orchestrate leukocyte infiltration and inflammation via the purinergic receptor P2Y2. The gene expression of ATP receptor P2Y2 did not change in several tissues in the course of obesity, but was increased within epididymal fat. Adipose tissue from P2Y 2-/- mice consuming high-fat diet (HFD) contained less crown-like structures with a reduced frequency of adipose tissue macrophages (ATMs). This was likely due to decreased leukocyte migration because of missing VCAM-1 exposition on P2Y2 deficient hypertrophic adipose tissue endothelial cells. Accordingly, P2Y 2-/- mice showed blunted traits of the metabolic syndrome: they gained less weight compared to P2Y 2+/+ controls, while intake of food and movement behaviour remained unchanged. Liver and adipose tissue were smaller in P2Y 2-/- animals. Insulin tolerance testing (ITT) performed in obese P2Y 2-/- mice revealed a better insulin sensitivity as well as lower plasma C-peptide and cholesterol levels. We demonstrate that interfering with somatic P2Y2 signalling prevents excessive immune cell deposition in diet-induced obesity (DIO), both attenuating adipose tissue inflammation and ameliorating the metabolic phenotype. Thus, blocking the P2Y2 cascade may be a promising strategy to limit metabolic disease and its sequelae.
Assuntos
Quimiotaxia de Leucócito/fisiologia , Síndrome Metabólica/patologia , Obesidade/metabolismo , Receptores Purinérgicos P2Y2/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Animais , Dieta Hiperlipídica , Inflamação/metabolismo , Inflamação/patologia , Masculino , Síndrome Metabólica/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Molécula 1 de Adesão de Célula Vascular/metabolismoRESUMO
Genetic factors are known to modulate cardiac susceptibility to ventricular hypertrophy and failure. To determine how strain influences the transcriptional response to pressure overload-induced heart failure (HF) and which of these changes accurately reflect the human disease, we analyzed the myocardial transcriptional profile of mouse strains with high (C57BL/6J) and low (129S1/SvImJ) susceptibility for HF development, which we compared to that of human failing hearts. Following transverse aortic constriction (TAC), C57BL/6J mice developed overt HF while 129S1/SvImJ did not. Despite a milder aortic constriction, impairment of ejection fraction and ventricular remodeling (dilation, fibrosis) was more pronounced in C57BL/6J mice. Similarly, changes in myocardial gene expression were more robust in C57BL/6J (461 genes) compared to 129S1/SvImJ mice (71 genes). When comparing these patterns to human dilated cardiomyopathy (1344 genes), C57BL/6J mice tightly grouped to human hearts. Overlay and bioinformatic analysis of the transcriptional profiles of C57BL/6J mice and human failing hearts identified six co-regulated genes (POSTN, CTGF, FN1, LOX, NOX4, TGFB2) with established link to HF development. Pathway enrichment analysis identified angiotensin and IGF-1 signaling as most enriched putative upstream regulator and pathway, respectively, shared between TAC-induced HF in C57BL/6J mice and in human failing hearts. TAC-induced heart failure in C57BL/6J mice more closely reflects the gene expression pattern of human dilated cardiomyopathy compared to 129S1/SvImJ mice. Unbiased as well as targeted gene expression and pathway analyses identified periostin, angiotensin signaling, and IGF-1 signaling as potential causes of increased HF susceptibility in C57BL/6J mice and as potentially useful drug targets for HF treatment.
Assuntos
Cardiomiopatia Dilatada/genética , Regulação da Expressão Gênica , Insuficiência Cardíaca/genética , Hipertrofia Ventricular Esquerda/genética , Função Ventricular Esquerda/genética , Animais , Cardiomiopatia Dilatada/complicações , Cardiomiopatia Dilatada/fisiopatologia , Estudos de Casos e Controles , Modelos Animais de Doenças , Progressão da Doença , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Predisposição Genética para Doença , Insuficiência Cardíaca/fisiopatologia , Hipertrofia Ventricular Esquerda/complicações , Hipertrofia Ventricular Esquerda/fisiopatologia , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Fenótipo , Especificidade da Espécie , Transcriptoma , Remodelação Ventricular/genéticaRESUMO
OBJECTIVE: A solid body of evidence supports a role of extracellular ATP and its P2 receptors in innate and adaptive immunity. It promotes inflammation as a danger signal in various chronic inflammatory diseases. Thus, we hypothesize contribution of extracellular ATP and its receptor P2Y2 in vascular inflammation and atherosclerosis. APPROACH AND RESULTS: Extracellular ATP induced leukocyte rolling, adhesion, and migration in vivo as assessed by intravital microscopy and in sterile peritonitis. To test the role of extracellular ATP in atherosclerosis, ATP or saline as control was injected intraperitoneally 3× a week in low-density lipoprotein receptor(-/-) mice consuming high cholesterol diet. Atherosclerosis significantly increased after 16 weeks in ATP-treated mice (n=13; control group, 0.26 mm2; ATP group, 0.33 mm2; P=0.01). To gain into the role of ATP-receptor P2Y2 in ATP-induced leukocyte recruitment, ATP was administered systemically in P2Y2-deficient or P2Y2-competent mice. In P2Y2-deficient mice, the ATP-induced leukocyte adhesion was significantly reduced as assessed by intravital microscopy. P2Y2 expression in atherosclerosis was measured by real-time polymerase chain reaction and immunohistochemistry and demonstrates an increased expression mainly caused by influx of P2Y2-expressing macrophages. To investigate the functional role of P2Y2 in atherogenesis, P2Y2-deficient low-density lipoprotein receptor(-/-) mice consumed high cholesterol diet. After 16 weeks, P2Y2-deficient mice showed significantly reduced atherosclerotic lesions with decreased macrophages compared with P2Y2-competent mice (n=11; aortic arch: control group, 0.25 mm(2); P2Y2-deficient, 0.14 mm2; P=0.04). Mechanistically, atherosclerotic lesions from P2Y2-deficient mice expressed less vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 RNA. CONCLUSIONS: We show that extracellular ATP induces vascular inflammation and atherosclerosis via activation of P2Y2.
Assuntos
Trifosfato de Adenosina/toxicidade , Aorta/efeitos dos fármacos , Doenças da Aorta/induzido quimicamente , Aterosclerose/induzido quimicamente , Inflamação/induzido quimicamente , Receptores Purinérgicos P2Y2/efeitos dos fármacos , Trifosfato de Adenosina/administração & dosagem , Trifosfato de Adenosina/sangue , Animais , Aorta/metabolismo , Aorta/patologia , Doenças da Aorta/genética , Doenças da Aorta/metabolismo , Doenças da Aorta/patologia , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Dieta Hiperlipídica , Modelos Animais de Doenças , Genótipo , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Injeções Intraperitoneais , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Migração e Rolagem de Leucócitos/efeitos dos fármacos , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peritonite/genética , Peritonite/metabolismo , Fenótipo , Placa Aterosclerótica , Receptores de LDL/deficiência , Receptores de LDL/genética , Receptores Purinérgicos P2Y2/deficiência , Receptores Purinérgicos P2Y2/genética , Receptores Purinérgicos P2Y2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/metabolismoRESUMO
Clinical, but not experimental evidence has suggested that air pollution particulate matter (PM) aggravates myocardial infarction (MI). Here, we aimed to describe mechanisms and consequences of PM exposure in an experimental model of MI. C57BL/6J mice were challenged with a PM surrogate (Residual Oil Fly Ash, ROFA) by intranasal installation before MI was induced by permanent ligation of the left anterior descending coronary artery. Histological analysis of the myocardium 7 days after MI demonstrated an increase in infarct area and enhanced inflammatory cell recruitment in ROFA-exposed mice. Mechanistically, ROFA exposure increased the levels of the circulating pro-inflammatory cytokines TNF-α, IL-6, and MCP-1, activated myeloid and endothelial cells, and enhanced leukocyte recruitment to the peritoneal cavity and the vascular endothelium. Notably, these effects on endothelial cells and circulating leukocytes could be reversed by neutralizing anti-TNF-α treatment. We identified alveolar macrophages as the primary source of elevated cytokine production after PM exposure. Accordingly, in vivo depletion of alveolar macrophages by intranasal clodronate attenuated inflammation and cell recruitment to infarcted tissue of ROFA-exposed mice. Taken together, our data demonstrate that exposure to environmental PM induces the release of inflammatory cytokines from alveolar macrophages which directly worsens the course of MI in mice. These findings uncover a novel link between air pollution PM exposure and inflammatory pathways, highlighting the importance of environmental factors in cardiovascular disease.
Assuntos
Cinza de Carvão/toxicidade , Macrófagos Alveolares/metabolismo , Infarto do Miocárdio/patologia , Material Particulado/toxicidade , Animais , Citocinas/biossíntese , Modelos Animais de Doenças , Citometria de Fluxo , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/imunologiaRESUMO
Macrophages in the arterial intima sustain chronic inflammation during atherogenesis. Under hypercholesterolemic conditions murine Ly6C(high) monocytes surge in the blood and spleen, infiltrate nascent atherosclerotic plaques, and differentiate into macrophages that proliferate locally as disease progresses. Spleen tyrosine kinase (SYK) may participate in downstream signaling of various receptors that mediate these processes. We tested the effect of the SYK inhibitor fostamatinib on hypercholesterolemia-associated myelopoiesis and plaque formation in Apoe(-/-) mice during early and established atherosclerosis. Mice consuming a high cholesterol diet supplemented with fostamatinib for 8 weeks developed less atherosclerosis. Histologic and flow cytometric analysis of aortic tissue showed that fostamatinib reduced the content of Ly6C(high) monocytes and macrophages. SYK inhibition limited Ly6C(high) monocytosis through interference with GM-CSF/IL-3 stimulated myelopoiesis, attenuated cell adhesion to the intimal surface, and blocked M-CSF stimulated monocyte to macrophage differentiation. In Apoe(-/-) mice with established atherosclerosis, however, fostamatinib treatment did not limit macrophage accumulation or lesion progression despite a significant reduction in blood monocyte counts, as lesional macrophages continued to proliferate. Thus, inhibition of hypercholesterolemia-associated monocytosis, monocyte infiltration, and differentiation by SYK antagonism attenuates early atherogenesis but not established disease when local macrophage proliferation dominates lesion progression.
Assuntos
Aterosclerose/tratamento farmacológico , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Monócitos/efeitos dos fármacos , Mielopoese/efeitos dos fármacos , Oxazinas/uso terapêutico , Proteínas Tirosina Quinases/antagonistas & inibidores , Piridinas/uso terapêutico , Aminopiridinas , Animais , Aterosclerose/imunologia , Aterosclerose/prevenção & controle , Adesão Celular/efeitos dos fármacos , Células Cultivadas , Progressão da Doença , Avaliação Pré-Clínica de Medicamentos , Feminino , Macrófagos/efeitos dos fármacos , Camundongos , Morfolinas , Oxazinas/farmacologia , Piridinas/farmacologia , Pirimidinas , Distribuição Aleatória , Quinase SykRESUMO
BACKGROUND: Costimulatory cascades such as the CD40L-CD40 dyad enhance immune cell activation and inflammation during atherosclerosis. Here, we tested the hypothesis that CD40 directly modulates traits of the metabolic syndrome in diet-induced obesity in mice. METHODS AND RESULTS: To induce the metabolic syndrome, wild-type or CD40(-/-) mice consumed a high-fat diet for 20 weeks. Unexpectedly, CD40(-/-) mice exhibited increased weight gain, impaired insulin secretion, augmented accumulation of inflammatory cells in adipose tissue, and enhanced proinflammatory gene expression. This proinflammatory and adverse metabolic phenotype could be transplanted into wild-type mice by reconstitution with CD40-deficient lymphocytes, indicating a major role for CD40 in T or B cells in this context. Conversely, therapeutic activation of CD40 signaling by the stimulating antibody FGK45 abolished further weight gain during the study, lowered glucose levels, improved insulin sensitivity, and suppressed adipose tissue inflammation. Mechanistically, CD40 activation decreased the expression of proinflammatory cytokines in T cells but not in B cells or macrophages. Finally, repopulation of lymphocyte-free Rag1(-/-) mice with CD40(-/-) T cells provoked dysmetabolism and inflammation, corroborating a protective role of CD40 on T cells in the metabolic syndrome. Finally, levels of soluble CD40 showed a positive association with obesity in humans, suggesting clinical relevance of our findings. CONCLUSIONS: We present the surprising finding that CD40 deficiency on T cells aggravates whereas activation of CD40 signaling improves adipose tissue inflammation and its metabolic complications. Therefore, positive modulation of the CD40 pathway might describe a novel therapeutic concept against cardiometabolic disease.
Assuntos
Tecido Adiposo/imunologia , Aterosclerose/imunologia , Antígenos CD40/genética , Antígenos CD40/imunologia , Síndrome Metabólica/imunologia , Obesidade/imunologia , Adipócitos/imunologia , Adipócitos/metabolismo , Transferência Adotiva , Animais , Aterosclerose/genética , Aterosclerose/metabolismo , Ligante de CD40/imunologia , Ligante de CD40/metabolismo , Humanos , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Resistência à Insulina/genética , Resistência à Insulina/imunologia , Ativação Linfocitária/imunologia , Masculino , Síndrome Metabólica/genética , Síndrome Metabólica/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/genética , Obesidade/metabolismo , Transdução de Sinais/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismoRESUMO
OBJECTIVE: Nucleotides such as ATP, ADP, UTP, and UDP serve as proinflammatory danger signals via purinergic receptors on their release to the extracellular space by activated or dying cells. UDP binds to the purinergic receptor Y6 (P2Y6) and propagates vascular inflammation by inducing the expression of chemokines such as monocyte chemoattractant protein 1, interleukin-8, or its mouse homologsCCL1 (chemokine [C-C motif] ligand 1)/keratinocyte chemokine, CXCL2 (chemokine [C-X-C motif] ligand 2)/macrophage inflammatory protein 2, and CXCL5 (chemokine [C-X-C motif] ligand 5)/LIX, and adhesion molecules such as vascular cell adhesion molecule 1 and intercellular cell adhesion molecule 1. Thus, P2Y6 contributes to leukocyte recruitment and inflammation in conditions such as allergic asthma or sepsis. Because atherosclerosis is a chronic inflammatory disease driven by leukocyte recruitment to the vessel wall, we hypothesized a role of P2Y6 in atherogenesis. APPROACH AND RESULTS: Intraperitoneal stimulation of wild-type mice with UDP induced rolling and adhesion of leukocytes to the vessel wall as assessed by intravital microscopy. This effect was not present in P2Y6-deficient mice. Atherosclerotic aortas of low-density lipoprotein receptor-deficient mice consuming high-cholesterol diet for 16 weeks expressed significantly more transcripts and protein of P2Y6 than respective controls. Finally, P2Y6 (-/-)/low-density lipoprotein receptor-deficient mice consuming high-cholesterol diet for 16 weeks developed significantly smaller atherosclerotic lesions compared with P2Y6 (+/+)/low-density lipoprotein receptor-deficient mice. Bone marrow transplantation identified a crucial role of P2Y6 on vascular resident cells, most likely endothelial cells, on leukocyte recruitment and atherogenesis. Atherosclerotic lesions of P2Y6-deficient mice contained fewer macrophages and fewer lipids as determined by immunohistochemistry. Mechanistically, RNA expression of vascular cell adhesion molecule 1 and interleukin-6 was decreased in these lesions and P2Y6-deficient macrophages took up less modified low-density lipoprotein cholesterol. CONCLUSIONS: We show for the first time that P2Y6 deficiency limits atherosclerosis and plaque inflammation in mice.
Assuntos
Aorta/metabolismo , Doenças da Aorta/prevenção & controle , Aterosclerose/prevenção & controle , Inflamação/prevenção & controle , Receptores Purinérgicos P2/deficiência , Animais , Aorta/imunologia , Aorta/patologia , Doenças da Aorta/genética , Doenças da Aorta/imunologia , Doenças da Aorta/metabolismo , Aterosclerose/genética , Aterosclerose/imunologia , Aterosclerose/metabolismo , Transplante de Medula Óssea , Colesterol na Dieta , Modelos Animais de Doenças , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Migração e Rolagem de Leucócitos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Placa Aterosclerótica , Receptores de LDL/deficiência , Receptores de LDL/genética , Receptores Purinérgicos P2/genética , Transdução de Sinais , Fatores de Tempo , Migração Transendotelial e Transepitelial , Difosfato de Uridina/metabolismoRESUMO
Juvenile crossbred pigs are widely used for acute and chronic animal testing due to their anatomical and physiological resemblance to humans. They are particularly prevalent in preclinical cardiovascular research, including studies investigating extracorporeal resuscitation and mechanical circulatory support devices. However, the availability of comprehensive laboratory reference values is limited. In a single-center study at the University Medical Center Freiburg, Germany, the hematologic and biochemical laboratory values of anesthetized healthy juvenile German crossbred farm pigs were determined. Blood samples were collected at the beginning of surgical procedures, either arterially or venously. Females and males were compared, and correlation with body weight was assessed. In total, 268 animals (weight 57.8 ± 12.4 kg) were included, thereof 180 castrated males (55.2 ± 7.7 kg) and 79 females (63.6 ± 18.3 kg). There were significant differences between males and females in 11 of 45 parameters and a moderate correlation between body weight and creatinine (R = 0.41, p < 0.001). The reference intervals and insights into sex and body weight correlations enhance the utility of healthy juvenile German crossbred farm pigs in translational research, providing a robust reference for future studies.
Assuntos
Peso Corporal , Animais , Masculino , Feminino , Suínos , Valores de Referência , Alemanha , Anestesia/veterináriaRESUMO
RATIONALE: CD40L figures prominently in chronic inflammatory diseases such as atherosclerosis. However, since CD40L potently regulates immune function and hemostasis by interaction with CD40 receptor and the platelet integrin GPIIb/IIIa, its global inhibition compromises host defense and generated thromboembolic complications in clinical trials. We recently reported that CD40L mediates atherogenesis independently of CD40 and proposed Mac-1 as an alternate receptor. OBJECTIVE: Here, we molecularly characterized the CD40L-Mac-1 interaction and tested whether its selective inhibition by a small peptide modulates inflammation and atherogenesis in vivo. METHODS AND RESULTS: CD40L concentration-dependently bound to Mac-1 I-domain in solid phase binding assays, and a high-affinity interaction was revealed by surface-plasmon-resonance analysis. We identified the motif EQLKKSKTL, an exposed loop between the α1 helix and the ß-sheet B, on Mac-1 as binding site for CD40L. A linear peptide mimicking this sequence, M7, specifically inhibited the interaction of CD40L and Mac-1. A cyclisized version optimized for in vivo use, cM7, decreased peritoneal inflammation and inflammatory cell recruitment in vivo. Finally, LDLr(-/-) mice treated with intraperitoneal injections of cM7 developed smaller, less inflamed atherosclerotic lesions featuring characteristics of stability. However, cM7 did not interfere with CD40L-CD40 binding in vitro and CD40L-GPIIb/IIIa-mediated thrombus formation in vivo. CONCLUSIONS: We present the novel finding that CD40L binds to the EQLKKSKTL motif on Mac-1 mediating leukocyte recruitment and atherogenesis. Specific inhibition of CD40L-Mac-1 binding may represent an attractive anti-inflammatory treatment strategy for atherosclerosis and other inflammatory conditions, potentially avoiding the unwanted immunologic and thrombotic effects of global inhibition of CD40L.
Assuntos
Aterosclerose/metabolismo , Ligante de CD40/metabolismo , Quimiotaxia de Leucócito/fisiologia , Antígeno de Macrófago 1/metabolismo , Trombose/etiologia , Motivos de Aminoácidos , Animais , Aterosclerose/genética , Aterosclerose/prevenção & controle , Tempo de Sangramento , Coagulação Sanguínea/efeitos dos fármacos , Coagulação Sanguínea/fisiologia , Células CHO , Células Cultivadas , Cricetinae , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Moleculares , Fragmentos de Peptídeos/farmacologia , Fragmentos de Peptídeos/uso terapêutico , Peptídeos Cíclicos/farmacologia , Peritonite/sangue , Peritonite/prevenção & controle , Conformação Proteica , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Receptores de LDL/deficiência , Proteínas Recombinantes de Fusão/fisiologia , Ressonância de Plasmônio de SuperfícieRESUMO
BACKGROUND AND AIMS: Atherosclerosis is a systemic and chronic inflammatory disease propagated by monocytes and macrophages. Yet, our knowledge on how transcriptome of these cells evolves in time and space is limited. We aimed at characterizing gene expression changes in site-specific macrophages and in circulating monocytes during the course of atherosclerosis. METHODS: We utilized apolipoprotein E-deficient mice undergoing one- and six-month high cholesterol diet to model early and advanced atherosclerosis. Aortic macrophages, peritoneal macrophages, and circulating monocytes from each mouse were subjected to bulk RNA-sequencing (RNA-seq). We constructed a comparative directory that profiles lesion- and disease stage-specific transcriptomic regulation of the three cell types in atherosclerosis. Lastly, the regulation of one gene, Gpnmb, whose expression positively correlated with atheroma growth, was validated using single-cell RNA-seq (scRNA-seq) of atheroma plaque from murine and human. RESULTS: The convergence of gene regulation between the three investigated cell types was surprisingly low. Overall 3245 differentially expressed genes were involved in the biological modulation of aortic macrophages, among which less than 1% were commonly regulated by the remote monocytes/macrophages. Aortic macrophages regulated gene expression most actively during atheroma initiation. Through complementary interrogation of murine and human scRNA-seq datasets, we showcased the practicality of our directory, using the selected gene, Gpnmb, whose expression in aortic macrophages, and a subset of foamy macrophages in particular, strongly correlated with disease advancement during atherosclerosis initiation and progression. CONCLUSIONS: Our study provides a unique toolset to explore gene regulation of macrophage-related biological processes in and outside the atheromatous plaque at early and advanced disease stages.
Assuntos
Aterosclerose , Placa Aterosclerótica , Animais , Humanos , Camundongos , Apolipoproteínas E , Aterosclerose/genética , Aterosclerose/metabolismo , Macrófagos/metabolismo , Glicoproteínas de Membrana , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/metabolismo , Placa Aterosclerótica/metabolismo , TranscriptomaRESUMO
RATIONALE: Tumor necrosis factor receptor-associated factors (TRAFs) are cytoplasmic adaptor proteins for the TNF/interleukin-1/Toll-like receptor superfamily. Ligands of this family comprise multiple important cytokines such as TNFα, CD40L, and interleukin-1ß that promote chronic inflammatory diseases such as atherosclerosis. We recently reported overexpression of TRAF5 in murine and human atheromata and that TRAF5 promotes inflammatory functions of cultured endothelial cells and macrophages. OBJECTIVE: This study tested the hypothesis that TRAF5 modulates atherogenesis in vivo. METHODS AND RESULTS: Surprisingly, TRAF5(-/-)/LDLR(-/-) mice consuming a high-cholesterol diet for 18 weeks developed significantly larger atherosclerotic lesions than did TRAF5(+/+)/LDLR(-/-) controls. Plaques of TRAF5-deficient animals contained more lipids and macrophages, whereas smooth muscle cells and collagen remained unchanged. Deficiency of TRAF5 in endothelial cells or in leukocytes enhanced adhesion of inflammatory cells to the endothelium in dynamic adhesion assays in vitro and in murine vessels imaged by intravital microscopy in vivo. TRAF5 deficiency also increased expression of adhesion molecules and chemokines and potentiated macrophage lipid uptake and foam cell formation. These findings coincided with increased activation of JNK and appeared to be independent of TRAF2. Finally, patients with stable or acute coronary heart disease had significantly lower amounts of TRAF5 mRNA in blood compared with healthy controls. CONCLUSIONS: Unexpectedly, TRAF5 deficiency accelerates atherogenesis in mice, an effect likely mediated by increased inflammatory cell recruitment to the vessel wall and enhanced foam cell formation.
Assuntos
Aterosclerose/patologia , Diferenciação Celular , Movimento Celular , Células Espumosas/patologia , Macrófagos/patologia , Fator 5 Associado a Receptor de TNF/deficiência , Idoso , Animais , Aterosclerose/genética , Aterosclerose/metabolismo , Diferenciação Celular/genética , Movimento Celular/genética , Células Cultivadas , Doença das Coronárias/imunologia , Doença das Coronárias/metabolismo , Feminino , Células Espumosas/metabolismo , Seguimentos , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Gravidez , Fator 5 Associado a Receptor de TNF/genéticaRESUMO
OBJECTIVE: Spleen tyrosine kinase (SYK) has come into focus as a potential therapeutic target in chronic inflammatory diseases, such as rheumatoid arthritis and asthma, as well as in B-cell lymphomas. SYK has also been involved in the signaling of immunoreceptors, cytokine receptors, and integrins. We therefore hypothesized that inhibition of SYK attenuates the inflammatory process underlying atherosclerosis and reduces plaque development. METHODS AND RESULTS: Low-density lipoprotein receptor-deficient mice consuming a high-cholesterol diet supplemented with 2 doses of the orally available SYK inhibitor fostamatinib for 16 weeks showed a dose-dependent reduction in atherosclerotic lesion size by up to 59±6% compared with the respective controls. Lesions of fostamatinib-treated animals contained fewer macrophages but more smooth muscle cells and collagen-characteristics associated with more stable plaques in humans. Mechanistically, fostamatinib attenuated adhesion and migration of inflammatory cells and limited macrophage survival. Furthermore, fostamatinib normalized high-cholesterol diet -induced monocytosis and inflammatory gene expression. CONCLUSIONS: We present the novel finding that the SYK inhibitor fostamatinib attenuates atherogenesis in mice. Our data identify SYK inhibition as a potentially fruitful antiinflammatory therapeutic strategy in atherosclerosis.
Assuntos
Aterosclerose/tratamento farmacológico , Inflamação/tratamento farmacológico , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Oxazinas/uso terapêutico , Proteínas Tirosina Quinases/antagonistas & inibidores , Piridinas/uso terapêutico , Receptores de LDL/deficiência , Administração Oral , Aminopiridinas , Animais , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Colesterol na Dieta/administração & dosagem , Macrófagos/efeitos dos fármacos , Macrófagos/fisiologia , Camundongos , Morfolinas , Pirimidinas , Quinase SykRESUMO
Extracellular adenosine-5'-triphosphate (ATP) acts as an import signaling molecule mediating inflammation via purinergic P2 receptors. ATP binds to the purinergic receptor P2X4 and promotes inflammation via increased expression of pro-inflammatory cytokines. Because of the central role of inflammation, we assumed a functional contribution of the ATP-P2X4-axis in atherosclerosis. Expression of P2X4 was increased in atherosclerotic aortic arches from low-density lipoprotein receptor-deficient mice being fed a high cholesterol diet as assessed by real-time polymerase chain reaction and immunohistochemistry. To investigate the functional role of P2X4 in atherosclerosis, P2X4-deficient mice were crossed with low-density lipoprotein receptor-deficient mice and fed high cholesterol diet. After 16 weeks, P2X4-deficient mice developed smaller atherosclerotic lesions compared to P2X4-competent mice. Furthermore, intravital microscopy showed reduced ATP-induced leukocyte rolling at the vessel wall in P2X4-deficient mice. Mechanistically, we found a reduced RNA expression of CC chemokine ligand 2 (CCL-2), C-X-C motif chemokine-1 (CXCL-1), C-X-C motif chemokine-2 (CXCL-2), Interleukin-6 (IL-6) and tumor necrosis factor α (TNFα) as well as a decreased nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3)-inflammasome priming in atherosclerotic plaques from P2X4-deficient mice. Moreover, bone marrow derived macrophages isolated from P2X4-deficient mice revealed a reduced ATP-mediated release of CCL-2, CC chemokine ligand 5 (CCL-5), Interleukin-1ß (IL-1ß) and IL-6. Additionally, P2X4-deficient mice shared a lower proportion of pro-inflammatory Ly6Chigh monocytes and a higher proportion of anti-inflammatory Ly6Clow monocytes, and expressend less endothelial VCAM-1. Finally, increased P2X4 expression in human atherosclerotic lesions from carotid endarterectomy was found, indicating the importance of potential implementations of this study's findings for human atherosclerosis. Collectively, P2X4 deficiency reduced experimental atherosclerosis, plaque inflammation and inflammasome priming, pointing to P2X4 as a potential therapeutic target in the fight against atherosclerosis.