Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Skin Res Technol ; 30(3): e13613, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38419420

RESUMO

BACKGROUND: Recent advancements in artificial intelligence have revolutionized dermatological diagnostics. These technologies, particularly machine learning (ML), including deep learning (DL), have shown accuracy equivalent or even superior to human experts in diagnosing skin conditions like melanoma. With the integration of ML, including DL, the development of at home skin analysis devices has become feasible. To this end, we introduced the Skinly system, a handheld device capable of evaluating various personal skin characteristics noninvasively. MATERIALS AND METHODS: Equipped with a moisture sensor and a multi-light-source camera, Skinly can assess age-related skin parameters and specific skin properties. Utilizing state-of-the-art DL, Skinly processed vast amounts of images efficiently. The Skinly system's efficacy was validated both in the lab and at home, comparing its results to established "gold standard" methods. RESULTS: Our findings revealed that the Skinly device can accurately measure age-associated parameters, that is, facial age, skin evenness, and wrinkles. Furthermore, Skinly produced data consistent with established devices for parameters like glossiness, skin tone, redness, and porphyrin levels. A separate study was conducted to evaluate the effects of two moisturizing formulations on skin hydration in laboratory studies with standard instrumentation and at home with Skinly. CONCLUSION: Thanks to its capability for multi-parameter measurements, the Skinly device, combined with its smartphone application, holds the potential to replace more expensive, time-consuming diagnostic tools. Collectively, the Skinly device opens new avenues in dermatological research, offering a reliable, versatile tool for comprehensive skin analysis.


Assuntos
Melanoma , Aplicativos Móveis , Neoplasias Cutâneas , Humanos , Inteligência Artificial , Pele/diagnóstico por imagem , Neoplasias Cutâneas/diagnóstico
2.
Med Phys ; 35(12): 5910-20, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19175146

RESUMO

State-of-the-art filtered backprojection (FBP) algorithms often define the filtering operation to be performed along oblique filtering lines in the detector. A limited scan field of view leads to the truncation of those filtering lines, which causes artifacts in the final reconstructed volume. In contrast to the case where filtering is performed solely along the detector rows, no methods are available for the case of oblique filtering lines. In this work, the authors present two novel truncation correction methods which effectively handle data truncation in this case. Method 1 (basic approach) handles data truncation in two successive preprocessing steps by applying a hybrid data extrapolation method, which is a combination of a water cylinder extrapolation and a Gaussian extrapolation. It is independent of any specific reconstruction algorithm. Method 2 (kink approach) uses similar concepts for data extrapolation as the basic approach but needs to be integrated into the reconstruction algorithm. Experiments are presented from simulated data of the FORBILD head phantom, acquired along a partial-circle-plus-arc trajectory. The theoretically exact M-line algorithm is used for reconstruction. Although the discussion is focused on theoretically exact algorithms, the proposed truncation correction methods can be applied to any FBP algorithm that exposes oblique filtering lines.


Assuntos
Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Algoritmos , Artefatos , Simulação por Computador , Desenho de Equipamento , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional , Modelos Estatísticos , Distribuição Normal , Imagens de Fantasmas , Interpretação de Imagem Radiográfica Assistida por Computador/instrumentação , Reprodutibilidade dos Testes , Fatores de Tempo , Água/química
3.
Phys Med Biol ; 52(17): 5393-414, 2007 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-17762094

RESUMO

In computed tomography, analytical fan-beam (FB) and cone-beam (CB) image reconstruction often involves a view-dependent data differentiation. The implementation of this differentiation step is critical in terms of resolution and image quality. In this work, we present a new differentiation scheme that is robust to changes in the data acquisition geometry and to coarse view sampling. Our scheme was compared to two previously suggested methods, which we call the direct scheme and the chain-rule scheme. Image reconstructions were performed from computer-simulated data of the Shepp-Logan phantom, the FORBILD thorax phantom and a modified FORBILD head phantom. For FB reconstruction, we investigated three acquisition geometries: a circular, an ellipse-shaped and a square-shaped trajectory. For CB reconstruction, the circle-plus-line trajectory was considered. Image comparison showed that the new scheme performs consistently well when varying the scenario, in both FB and CB geometry, unlike the other two schemes.


Assuntos
Algoritmos , Armazenamento e Recuperação da Informação/métodos , Intensificação de Imagem Radiográfica/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada Espiral/métodos , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Tomografia Computadorizada Espiral/instrumentação
4.
Phys Med Biol ; 52(23): 6943-60, 2007 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-18029986

RESUMO

In this paper, a novel geometric calibration method for C-arm cone-beam scanners is presented which allows the calibration of the circle-plus-arc trajectory. The main idea is the separation of the trajectory into two circular segments (circle segment and arc segment) which are calibrated independently. This separation makes it possible to reuse a calibration phantom which has been successfully applied in clinical environments to calibrate numerous routinely used C-arm systems. For each trajectory segment, the phantom is placed in an optimal position. The two calibration results are then combined by computing the transformation the phantom underwent between the independent calibration runs. This combination can be done in a post-processing step by using standard linear algebra. The method is not limited to circle-plus-arc trajectories and works for any calibration procedure in which the phantom has a preferred orientation with respect to a trajectory segment. Results are presented for both simulated as well as real data acquired with a C-arm system. We also present the first image reconstruction results for the circle-plus-arc trajectory using real C-arm data.


Assuntos
Algoritmos , Imageamento Tridimensional/normas , Interpretação de Imagem Radiográfica Assistida por Computador/instrumentação , Interpretação de Imagem Radiográfica Assistida por Computador/normas , Tomografia Computadorizada Espiral/instrumentação , Tomografia Computadorizada Espiral/normas , Calibragem , Alemanha , Imageamento Tridimensional/instrumentação , Imageamento Tridimensional/métodos , Intensificação de Imagem Radiográfica/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
5.
Ultramicroscopy ; 102(3): 221-6, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15639353

RESUMO

Shear force detection is a common method of tip-sample distance control in scanning near-field optical microscopy. Shear force is the force acting on a laterally oscillating probe tip near a surface. Despite its frequent use, the nature of the interaction between tip and sample surface is a matter of debate. In order to investigate the problem, approach curves, i.e. amplitude and phase of the tip oscillation as a function of the tip-sample distance, are studied in terms of a harmonic oscillator model. The extracted force and damping constants are influenced by the substrate material. The character of the interaction ranges from elastic to dissipative. The interaction range is of atomic dimensions with a sharp onset. Between a metal-coated tip and a Cu sample, a power law for the force-distance curve is observed.


Assuntos
Microscopia de Força Atômica , Modelos Teóricos , Análise Espectral , Estresse Mecânico , Vibração
6.
Int J Comput Assist Radiol Surg ; 7(1): 73-86, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21603942

RESUMO

OBJECTIVE: Developing an efficient tool for accurate three-dimensional imaging from projections measured with C-arm systems. MATERIAL AND METHODS: A circle-plus-arc trajectory, which is complete and thus amenable to accurate reconstruction, is used. This trajectory is particularly attractive as its implementation does not require moving the patient. For reconstruction, we use the "M-line method", which allows processing the data in the efficient filtered backprojection mode. This method also offers the advantage of not requiring an ideal data acquisition geometry, i.e., the M-line algorithm can account for known deviations in the scanning geometry, which is important given that sizeable deviations are generally encountered in C-arm imaging. RESULTS: A robust implementation scheme of the "M-line method" that applies straightforwardly to real C-arm data is presented. In particular, a numerically stable technique to compute the view-dependent derivative with respect to the source trajectory parameter is applied, and an efficient way to compute the π-line backprojection intervals via a polygonal weighting mask is presented. Projection data of an anthropomorphic thorax phantom were acquired on a medical C-arm scanner and used to demonstrate the benefit of using a complete data acquisition geometry with an accurate reconstruction algorithm versus using a state-of-the-art implementation of the conventional Feldkamp algorithm with a circular short scan of cone-beam data. A significant image quality improvement based on visual assessment is shown in terms of cone-beam artifacts.


Assuntos
Algoritmos , Imageamento Tridimensional/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Humanos , Imageamento Tridimensional/instrumentação , Modelos Estatísticos , Imagens de Fantasmas , Interpretação de Imagem Radiográfica Assistida por Computador/instrumentação , Tomografia Computadorizada por Raios X/instrumentação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa