Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Environ Sci Technol ; 58(11): 4979-4988, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38445630

RESUMO

Microbial methane oxidation has a significant impact on the methane flux from marine gas hydrate areas. However, the environmental fate of methane remains poorly constrained. We quantified the relative contributions of aerobic and anaerobic methanotrophs to methane consumption in sediments of the gas hydrate-bearing Sakata Knoll, Japan, by in situ geochemical and microbiological analyses coupled with 13C-tracer incubation experiments. The anaerobic ANME-1 and ANME-2 species contributed to the oxidation of 33.2 and 1.4% methane fluxes at 0-10 and 10-22 cm below the seafloor (bsf), respectively. Although the aerobic Methylococcaceae species consumed only 0.9% methane flux in the oxygen depleted 0.0-0.5 cmbsf zone, their metabolic activity was sustained down to 6 cmbsf (based on rRNA and lipid biosyntheses), increasing their contribution to 10.3%. Our study emphasizes that the co-occurrence of aerobic and anaerobic methanotrophy at the redox transition zone is an important determinant of methane flux.


Assuntos
Archaea , Sedimentos Geológicos , Archaea/genética , Archaea/metabolismo , Sedimentos Geológicos/microbiologia , Anaerobiose , Metano , RNA Ribossômico 16S/genética , Oxirredução , Filogenia
2.
Environ Sci Technol ; 57(37): 13874-13886, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37676844

RESUMO

A transition to ammonia recovery from wastewater has started; however, a technology for sustainable nitrogen retention in the form of ammonia and organic carbon removal is still in development. This study validated a microaerophilic activated sludge (MAS) system to efficiently retain ammonia from high-strength nitrogenous wastewater. The MAS is based on conventional activated sludge (CAS) with aerobic and settling compartments. Low dissolved oxygen (DO) concentrations (<0.2 mg/L) and short solids retention times (SRTs) (<5 days) eliminated nitrifying bacteria. The two parallel MASs were successfully operated for 300 days and had ammonia retention of 101.7 ± 24.9% and organic carbon removal of 85.5 ± 8.9%. The MASs mitigated N2O emissions with an emission factor of <0.23%, much lower than the default value of CAS (1.6%). A short-term step-change test demonstrated that N2O indicated the initiation of nitrification and the completion of denitrification in the MAS. The parallel MASs had comparable microbial diversity, promoting organic carbon oxidation while inhibiting ammonia-oxidizing microorganisms (AOMs), as revealed by 16S rRNA gene amplicon sequencing, the quantitative polymerase chain reaction of functional genes, and fluorescence in situ hybridization of ß-proteobacteria AOB. The microbial analyses also uncovered that filamentous bacteria were positively correlated with effluent turbidity. Together, controlling DO and SRT achieved organic carbon removal and successful ammonia retention, mainly by suppressing AOM activity. This process represents a new nitrogen management paradigm.


Assuntos
Microbiota , Esgotos , Águas Residuárias , Amônia , Hibridização in Situ Fluorescente , RNA Ribossômico 16S , Carbono , Nitrogênio
3.
Appl Microbiol Biotechnol ; 107(23): 7365-7374, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37773217

RESUMO

Hydroponic cultivation of Solanum lycopersicum (tomato) is important, and high tomato production depends on the use of nitrogen and phosphate fertilizers. We had developed a microbial fertilizer (MF), which is mainly composed of nitrate. To investigate the effect of MF on plant growth, hydroponic tomato was grown with MF or commercial inorganic fertilizer (IF), and the microbiomes of the rhizosphere and the liquid phase were analyzed by confocal microscopy and high-throughput sequencing. Plant biomass and biofilm formation were increased by growth in MF compared to IF. The microbial community structures of tomato roots and hydroponic water differed between the two conditions, and three operational taxonomic units (OTUs) dominated in plants grown with MF. The three OTUs were related to Rudaea spp., Chitinophaga spp., and Stenotrophobacter terrae, which are reported to be disease-suppressive epiphytic or endophytic microbes of plant roots. Because these three OTUs also predominated in the MF itself, they were likely provided to the rhizosphere or endophytic environments of tomato roots via hydroponic water. KEY POINTS: • Microbial fertilizer for hydroponic growth enhanced biofilm formation on tomato root. • Microbial fertilizer contains tomato-root epiphytic or endophytic microbes. • Microbial fertilizer provided beneficial microbes to the rhizosphere and endophytic environments of tomato roots via hydroponic water.


Assuntos
Alphaproteobacteria , Solanum lycopersicum , Fertilizantes/microbiologia , Hidroponia , Microbiologia do Solo , Rizosfera , Água , Raízes de Plantas/microbiologia
4.
BMC Genomics ; 22(1): 475, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34171987

RESUMO

BACKGROUND: Halotolerant Fe (III) oxide reducers affiliated in the family Desulfuromonadaceae are ubiquitous and drive the carbon, nitrogen, sulfur and metal cycles in marine subsurface sediment. Due to their possible application in bioremediation and bioelectrochemical engineering, some of phylogenetically close Desulfuromonas spp. strains have been isolated through enrichment with crystalline Fe (III) oxide and anode. The strains isolated using electron acceptors with distinct redox potentials may have different abilities, for instance, of extracellular electron transport, surface recognition and colonization. The objective of this study was to identify the different genomic signatures between the crystalline Fe (III) oxide-stimulated strain AOP6 and the anode-stimulated strains WTL and DDH964 by comparative genome analysis. RESULTS: The AOP6 genome possessed the flagellar biosynthesis gene cluster, as well as diverse and abundant genes involved in chemotaxis sensory systems and c-type cytochromes capable of reduction of electron acceptors with low redox potentials. The WTL and DDH964 genomes lacked the flagellar biosynthesis cluster and exhibited a massive expansion of transposable gene elements that might mediate genome rearrangement, while they were deficient in some of the chemotaxis and cytochrome genes and included the genes for oxygen resistance. CONCLUSIONS: Our results revealed the genomic signatures distinctive for the ferric iron oxide- and anode-stimulated Desulfuromonas spp. strains. These findings highlighted the different metabolic abilities, such as extracellular electron transfer and environmental stress resistance, of these phylogenetically close bacterial strains, casting light on genome evolution of the subsurface Fe (III) oxide reducers.


Assuntos
Geobacter , Desulfuromonas , Eletrodos , Transporte de Elétrons , Compostos Férricos , Oxirredução
5.
Environ Sci Technol ; 55(12): 8410-8421, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34078080

RESUMO

Although denitrification-dependent chemolithotrophic sulfur oxidizers proliferated in tsunami-deposited marine sediment with nitrate amendment, their ecophysiological roles in biogeochemical carbon transfer are not addressed. We employed time-resolved high-sensitivity 13C-bicarbonate probing of rRNA to unveil the carbon fixation and resulting trophic relationship of the nitrate-amended sediment microorganisms. Nitrate reduction and sulfur oxidation co-occurred along with significant decreases in the 13CO2 and dissolved bicarbonate concentrations for the first 4 days of the incubation, during which the denitrification-dependent sulfur-oxidizing chemolithotrophs, i.e., the Sulfurimonas sp. HDS01 and Thioalkalispira sp. HDS22 relatives, and the sulfate-reducing heterotrophs, i.e., the Desulfobulbus spp. and Desulfofustis glycolicus relatives, actively incorporated 13C. These indicated that the sulfur oxidizers and sulfate reducers were tightly associated with each other through the direct carbon transfer. Relatives of the fermentative Thalassomonas sediminis and the hydrolytic Pararheinheimera aquatica, in addition to various sulfur-cycling microorganisms, significantly assimilated 13C at day 14. Although the incorporation of 13C was not detected, a syntrophic volatile-fatty-acid oxidizer and hydrogenotrophic methanogens significantly expressed their 16S rRNA molecules at day 21, indicating the metabolic activation of these final decomposers under the latter nutrient-limited conditions. The results demonstrated the nitrate-driven trophic association of sulfur-cycling microorganisms and the subsequent microbial activation and diversification, triggering the restoration of the marine ecosystem function.


Assuntos
Bicarbonatos , Nitratos , Chromatiaceae , Deltaproteobacteria , Ecossistema , Gammaproteobacteria , Sedimentos Geológicos , Oxirredução , Filogenia , RNA Ribossômico 16S/genética , Enxofre , Tsunamis
6.
Environ Sci Technol ; 55(13): 9231-9242, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34142798

RESUMO

Although nitrogen removal by partial nitritation and anammox is more cost-effective than conventional nitrification and denitrification, one downside is the production and accumulation of nitrous oxide (N2O). The potential exploitation of N2O-reducing bacteria, which are resident members of anammox microbial communities, for N2O mitigation would require more knowledge of their ecophysiology. This study investigated the phylogeny of resident N2O-reducing bacteria in an anammox microbial community and quantified individually the processes of N2O production and N2O consumption. An up-flow column-bed anammox reactor, fed with NH4+ and NO2- and devoid of oxygen, emitted N2O at an average conversion ratio (produced N2O: influent nitrogen) of 0.284%. Transcriptionally active and highly abundant nosZ genes in the reactor biomass belonged to the Burkholderiaceae (clade I type) and Chloroflexus genera (clade II type). Meanwhile, less abundant but actively transcribing nosZ strains were detected in the genera Rhodoferax, Azospirillum, Lautropia, and Bdellovibrio and likely act as an N2O sink. A novel 15N tracer method was adapted to individually quantify N2O production and N2O consumption rates. The estimated true N2O production rate and true N2O consumption rate were 3.98 ± 0.15 and 3.03 ± 0.18 mgN·gVSS-1·day-1, respectively. The N2O consumption rate could be increased by 51% (4.57 ± 0.51 mgN·gVSS-1·day-1) with elevated N2O concentrations but kept comparable irrespective of the presence or absence of NO2-. Collectively, the approach allowed the quantification of N2O-reducing activity and the identification of transcriptionally active N2O reducers that may constitute as an N2O sink in anammox-based processes.


Assuntos
Reatores Biológicos , Desnitrificação , Nitrificação , Nitrogênio , Óxido Nitroso , Oxirredução
7.
Appl Microbiol Biotechnol ; 104(16): 6893-6903, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32556398

RESUMO

Sulfate-reducing bioreactors, also called biochemical reactors, represent a promising option for passive treatment of mining-influenced water (MIW) based on similar technology to aerobic/anaerobic-constructed wetlands and vertical-flow wetlands. MIW from each mine site has a variety of site-specific properties related to its treatment; therefore, design factors, including the organic substrates and inorganic materials packed into the bioreactor, must be tested and evaluated before installation of full-scale sulfate-reducing bioreactors. Several full-scale sulfate-reducing bioreactors operating at mine sites provide examples, but holistic understanding of the complex treatment processes occurring inside the bioreactors is lacking. With the recent introduction of high-throughput DNA sequencing technologies, microbial processes within bioreactors may be clarified based on the relationships between operational parameters and key microorganisms identified using high-resolution microbiome data. In this review, the test design procedures and precedents of full-scale bioreactor application for MIW treatment are briefly summarized, and recent knowledge on the sulfate-reducing microbial communities of field-based bioreactors from fine-scale monitoring is presented.Key points• Sulfate-reducing bioreactors are promising for treatment of mining-influenced water.• Various design factors should be tested for application of full-scale bioreactors.• Introduction of several full-scale passive bioreactor systems at mine sites.• Desulfosporosinus spp. can be one of the key bacteria within field-based bioreactors.


Assuntos
Reatores Biológicos/microbiologia , Microbiota , Mineração , Sulfatos/metabolismo , Purificação da Água/métodos , Bactérias/classificação , Bactérias/metabolismo , Peptococcaceae/metabolismo , Poluentes Químicos da Água/análise , Purificação da Água/instrumentação
8.
J Environ Manage ; 269: 110786, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32425174

RESUMO

The adoption of anaerobic membrane bioreactors (AnMBRs) for organic solid waste management is important for the recovery of energy and high-quality treated water. However, few studies have focused on AnMBR treatment of high-strength organic solid waste and the microorganisms involved under deteriorated operating conditions. In the present study, a 15-L bench-scale AnMBR was operated using a model slurry of high-strength organic solid waste with the organic loading rate (OLR) increasing from 2.3 g chemical oxygen demand (COD) L-1 day-1 (represented as a controlled condition) to 11.6 g COD L-1 day-1 (represented as a deteriorated condition), and microbial community dynamics over 120 days of operation were analyzed. The abundances of methanogens and bacteria that were dominant under the controlled condition decreased as a result of both high organic loading and sludge withdrawal under the deteriorated condition and did not recover thereafter. Instead, numbers of putative volatile fatty acid (VFA)-producing bacterial operational taxonomic units (OTUs) related to the genus Prevotella increased rapidly, reaching a relative abundance of 43.2%, leading to the deterioration of methanogenic AnMBR operation. Considering that the sequences of these OTUs exhibited relatively low sequence identity (91-95%) to those of identified Prevotella species, the results strongly suggest that the accumulation of VFAs by novel VFA-producing bacteria in the digestion sludge promotes the disruption of the methanogen community under deteriorated conditions.


Assuntos
Microbiota , Resíduos Sólidos , Anaerobiose , Reatores Biológicos , Metano , Eliminação de Resíduos Líquidos , Águas Residuárias
9.
Environ Sci Technol ; 53(20): 12101-12112, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31517481

RESUMO

The recent discovery of nitrous oxide (N2O)-reducing bacteria suggests a potential biological sink for the potent greenhouse gas N2O. For an application toward N2O mitigation, characterization of more isolates will be required. Here, we describe the successful enrichment and isolation of high-affinity N2O-reducing bacteria using a N2O-fed reactor (N2OFR). Two N2OFRs, where N2O was continuously and directly supplied as the sole electron acceptor to a biofilm grown on a gas-permeable membrane, were operated with acetate or a mixture of peptone-based organic substrates as an electron donor. In parallel, a NO3- -fed reactor (NO3FR), filled with a nonwoven sheet substratum, was operated using the same inoculum. We hypothesized that supplying N2O vs NO3- would enhance the dominance of distinct N2O-reducing bacteria. Clade II type nosZ bacteria became rapidly enriched over clade I type nosZ bacteria in the N2OFRs, whereas the opposite held in the NO3FR. High-throughput sequencing of 16S rRNA gene amplicons revealed the dominance of Rhodocyclaceae in the N2OFRs. Strains of the Azospira and Dechloromonas genera, canonical denitrifiers harboring clade II type nosZ, were isolated with high frequency from the N2OFRs (132 out of 152 isolates). The isolates from the N2OFR demonstrated higher N2O uptake rates (Vmax: 4.23 × 10-3-1.80 × 10-2 pmol/h/cell) and lower N2O half-saturation coefficients (Km,N2O: 1.55-2.10 µM) than a clade I type nosZ isolate from the NO3FR. Furthermore, the clade II type nosZ isolates had higher specific growth rates on N2O than nitrite as an electron acceptor. Hence, continuously and exclusively supplying N2O in an N2OFR allows the enrichment and isolation of high-affinity N2O-reducing strains, which may be used as N2O sinks in bioaugmentation efforts.


Assuntos
Bactérias , Óxido Nitroso , Biofilmes , Desnitrificação , RNA Ribossômico 16S , Rhodocyclaceae
10.
Environ Sci Technol ; 53(21): 12398-12406, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31580064

RESUMO

The natural microbial communities involved in arsenic (As) extraction under biostimulated conditions are still unclear. In this study, soil slurry was incubated with arsenate [As(V)]-laden Fe(III) or Al (hydr)oxides with lactate or acetate. After 40 d, dissolved As released from As(V)-laden Fe(III) accounted for 54% of the initial solid-phase As in lactate-amended slurries, while much less As was released from acetate-amended slurries. As was released more rapidly from As(V)-laden Al, but the total release was relatively low (45%). High-throughput Illumina sequencing of 16S rRNA genes revealed that dissimilatory metal(loid) reducers such as Desulfitobacterium became predominant in lactate-amended slurries. Moreover, anaerobic fermenters in the Sporomusaceae family were predominant. Interestingly, a Sporomusaceae bacterial strain isolated from the slurry was capable of releasing As from both As(V)-laden (hydr)oxides in the presence of lactate. The strain first released As as As(V) and subsequently reduced it to As(III) in the aqueous phase. These results suggest that lactate is a suitable carbon source for As extraction by natural microbial communities, and that both dissimilatory metal(loid) reducers and certain anaerobic fermenters play significant roles in As extraction. Microbial reductive dissolution of As may be expected to be a cost-effective restoration technique for As-contaminated soils.


Assuntos
Arsênio , Microbiota , Poluentes do Solo , Arseniatos , Carbono , Compostos Férricos , Minerais , RNA Ribossômico 16S , Solo , Solubilidade
11.
Appl Microbiol Biotechnol ; 103(18): 7783-7793, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31388728

RESUMO

Five types of sulfate-reducing passive bioreactors with rice bran as substrate were operated at three different mine sites under various operating conditions to investigate and compare the dominant sulfate-reducing bacteria (SRBs) involved in acid mine drainage (AMD) treatment. In all bioreactors, AMD was properly treated under the national effluent standard of Japan when 16 samples in total were taken from different depths of the bioreactors at different sampling times. Analysis of the microbiomes in the five bioreactors by Illumina sequencing showed that Desulfosporosinus spp. were dominant SRBs in all bioreactors (the relative abundances were ~ 26.0% of the total population) regardless of reactor configurations, sizes, and operating conditions. This genus is known to comprise spore-forming, acid-tolerant, and oxygen-resistant SRBs with versatile metabolic capabilities. Microbial populations of AMD water and soil samples (as inocula) from the respective mine sites were also analyzed to investigate the origin of the genus Desulfosporosinus. Desulfosporosinus spp. were detectable in most AMD water samples, even at low relative abundances (0.0025 to 0.0069% of total AMD population), suggesting that the genus Desulfosporosinus is present within the AMD water that flows into the bioreactor. These data strongly imply that the passive treatment system is a versatile and widely applicable process for AMD treatment.


Assuntos
Ácidos/metabolismo , Reatores Biológicos/microbiologia , Mineração , Peptococcaceae/metabolismo , Sulfatos/metabolismo , Poluentes Químicos da Água/metabolismo , Biodegradação Ambiental , Sequenciamento de Nucleotídeos em Larga Escala , Japão , Microbiota , Oryza , Peptococcaceae/genética , Projetos Piloto
12.
Appl Microbiol Biotechnol ; 102(3): 1501-1512, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29204898

RESUMO

The goal of this study was to develop a startup strategy for a high-rate anaerobic ammonium oxidation (anammox) reactor to treat waste brine with high concentrations of ammonium from a natural gas plant. An upflow anaerobic sludge blanket (UASB) anammox reactor with an effective volume of 294 L was fed continuously with waste brine with a salinity of 3% and a NH4+ concentration of 180 mg-N/L, as well as a NaNO2 solution. By inoculating a methanogenic granular biomass as a biomass carrier, the reactor attained the maximum volumetric nitrogen removal rate (NRR) of 10.7 kg-N/m3/day on day 209, which was 1.7 times higher than the highest reported NRR for wastewater of comparable salinity. High-throughput sequencing of 16S rRNA gene amplicons revealed that Candidatus Scalindua wagneri was enriched successfully in granules in the UASB, and it replaced Methanosaeta and became dominant in the granule. The inhibitory effect of NO2- on the anammox reaction in the granules was assessed by a 15N tracer method, and the results showed that anammox activity was maintained at 60% after exposure to 300 mg-N/L of NO2- for 24 h. Compared with previous studies of the susceptibilities of Candidatus Brocadia and Candidatus Kuenenia to NO2-, the enriched marine anammox bacteria were proven to have comparable or even higher tolerances for high NO2- concentrations after a long exposure.


Assuntos
Compostos de Amônio/metabolismo , Bactérias/metabolismo , Reatores Biológicos/microbiologia , Desnitrificação , Nitrogênio/metabolismo , Esgotos/microbiologia , Anaerobiose , Biomassa , Oxirredução , Projetos Piloto , Sais/química , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/microbiologia , Purificação da Água/métodos
13.
Proc Natl Acad Sci U S A ; 112(37): E5179-88, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26324935

RESUMO

Symbiosis has significantly contributed to organismal adaptation and diversification. For establishment and maintenance of such host-symbiont associations, host organisms must have evolved mechanisms for selective incorporation, accommodation, and maintenance of their specific microbial partners. Here we report the discovery of a previously unrecognized type of animal organ for symbiont sorting. In the bean bug Riptortus pedestris, the posterior midgut is morphologically differentiated for harboring specific symbiotic bacteria of a beneficial nature. The sorting organ lies in the middle of the intestine as a constricted region, which partitions the midgut into an anterior nonsymbiotic region and a posterior symbiotic region. Oral administration of GFP-labeled Burkholderia symbionts to nymphal stinkbugs showed that the symbionts pass through the constricted region and colonize the posterior midgut. However, administration of food colorings revealed that food fluid enters neither the constricted region nor the posterior midgut, indicating selective symbiont passage at the constricted region and functional isolation of the posterior midgut for symbiosis. Coadministration of the GFP-labeled symbiont and red fluorescent protein-labeled Escherichia coli unveiled selective passage of the symbiont and blockage of E. coli at the constricted region, demonstrating the organ's ability to discriminate the specific bacterial symbiont from nonsymbiotic bacteria. Transposon mutagenesis and screening revealed that symbiont mutants in flagella-related genes fail to pass through the constricted region, highlighting that both host's control and symbiont's motility are involved in the sorting process. The blocking of food flow at the constricted region is conserved among diverse stinkbug groups, suggesting the evolutionary origin of the intestinal organ in their common ancestor.


Assuntos
Burkholderia/fisiologia , Heterópteros/microbiologia , Intestinos/microbiologia , Simbiose/genética , Administração Oral , Animais , Corantes/química , Sistema Digestório/microbiologia , Escherichia coli/metabolismo , Evolução Molecular , Flagelos/fisiologia , Trato Gastrointestinal/microbiologia , Proteínas de Fluorescência Verde/metabolismo , Insetos , Proteínas Luminescentes/metabolismo , Microscopia Eletrônica de Transmissão , Mutagênese , Mutação , Filogenia , Plasmídeos/metabolismo , Proteína Vermelha Fluorescente
14.
J Environ Sci (China) ; 73: 1-8, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30290858

RESUMO

Long-term exposure of nitrifiers to high concentrations of free ammonia (FA) and free nitrous acid (FNA) may affect nitrifiers activity and nitrous oxide (N2O) emission. Two sequencing batch reactors (SBRs) were operated at influent ammonium nitrogen (NH4-N) concentrations of 800mg/L (SBRH) and 335mg/L (SBRL), respectively. The NH4-N removal rates in SBRH and SBRL were around 2.4 and 1.0g/L/day with the nitritation efficiencies of 99.3% and 95.7%, respectively. In the simulated SBR cycle, the N2O emission factors were 1.61% in SBRH and 2.30% in SBRL. N2O emission was affected slightly by FA with the emission factor of 0.22%-0.65%, while N2O emission increased with increasing FNA concentrations with the emission factor of 0.22%-0.96%. The dominant ammonia oxidizing bacteria (AOB) were Nitrosomonas spp. in both reactors, and their relative proportions were 38.89% in SBRH and 13.36% in SBRL. Within the AOB genus, a species (i.e., operational taxonomic unit [OTU] 76) that was phylogenetically identical to Nitrosomonas europaea accounted for 99.07% and 82.04% in SBRH and SBRL, respectively. Additionally, OTU 215, which was related to Nitrosomonas stercoris, accounted for 16.77% of the AOB in SBRL.


Assuntos
Reatores Biológicos/microbiologia , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/microbiologia , Amônia , Betaproteobacteria , Nitrificação , Ácido Nitroso , Óxido Nitroso , Águas Residuárias/química
15.
Appl Microbiol Biotechnol ; 101(4): 1673-1683, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27837317

RESUMO

We investigated the effects of free ammonia (FA) and free nitrous acid (FNA) concentrations on the predominant ammonia-oxidizing bacteria (AOB) and the emission of nitrous oxide (N2O) in a lab-scale sequencing batch reactor for partial nitrification. The reactor was operated with stepwise increases in the NH4+ loading rate, which resulted in a maximum FA concentration of 29.3 mg-N/L at pH 8.3. Afterwards, FNA was increased by a gradual decrease of pH, reaching its maximum concentration of 4.1 mg-N/L at pH 6.3. Fluorescence in situ hybridization indicated that AOB remained predominant during the operation, achieving specific nitrification rates of 1.04 and 0.99 g-N/g-VSS/day at the highest accumulations of FA and FNA, respectively. These rates were in conjunction with partial nitrification efficiencies of >84%. The N2O emission factor of oxidized NH4+ was 0.90% at pH 7.0, which was higher than those at pH 8.3 (0.11%) and 6.3 (0.12%), the pHs with the maximum FA and FNA concentrations, respectively. High-throughput sequencing of 16S ribosomal RNA genes showed that increases in FNA drastically changed the predominant AOB species, although increased FA produced no significant changes. This study demonstrates that the FNA concentration and pH are the main drivers that determine the predominant AOB species and N2O-emission in a partial nitrifying bioreactor.


Assuntos
Amônia/metabolismo , Ácido Nitroso/metabolismo , Bactérias/metabolismo , Reatores Biológicos/microbiologia , Concentração de Íons de Hidrogênio , Nitrificação , Óxido Nitroso/metabolismo
16.
Appl Microbiol Biotechnol ; 100(14): 6447-6456, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27020291

RESUMO

Intense rainfall is one of the most serious and common natural events, causing the excessive inflow of rainwater into wastewater treatment plants. However, little is known about the impacts of rainwater dilution on the structure and function of the sludge microorganisms. Here, high-throughput sequencing of 16S ribosomal RNA (rRNA) genes was implemented to describe the microbial community dynamics during the simulated intense rainfall situation (event i) in which approximately 45 % of the sludge biomass was artificially overflowed by massive water supply in a pilot-scale membrane bioreactor. Thereafter, we investigated the functional and structural responses of the perturbed microbial communities to subsequent conditional changes, i.e., an increase in organic loading rate from 225 to 450 mg chemical oxygen demand (COD) l(-1) day(-1) (event ii) and an addition of a microbiota activator (event iii). Due to the event i, the COD removal declined to 78.2 %. This deterioration coincided with the decreased microbial diversity and the proliferation of the oligotrophic Aquabacterium sp. During the succeeding events ii and iii, the sludge biomass increased and the COD removal became higher (86.5-97.4 %). With the apparent recovery of the reactor performance, microbial communities became diversified and the compositions dynamically changed. Notably, various bacterial micropredators were highly enriched under the successive conditions, most likely being involved in the flexible reorganization of microbial communities. These results indicate that the activated sludge harbored functionally redundant microorganisms that were able to thrive and proliferate along with the conditional changes, thereby contributing to the functional maintenance of the membrane bioreactor.


Assuntos
Biomassa , Reatores Biológicos/microbiologia , Chuva , Esgotos/microbiologia , Biodegradação Ambiental , Análise da Demanda Biológica de Oxigênio , DNA Bacteriano/genética , Projetos Piloto , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Águas Residuárias/microbiologia
17.
Environ Sci Technol ; 49(13): 7684-91, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26020820

RESUMO

Selenate is one of the most common toxic metal compounds in contaminated soils. Its redox status can be changed by microbial activity, thus affecting its water solubility and soil mobility. However, current knowledge of microbial dynamics has been limited by the low sensitivity of past isolation and identification protocols. Here, high-throughput Illumina sequencing of 16S rRNA genes was applied to monitor the shift of the microorganisms in an anoxic contaminated soil after Se(VI) and acetate amendment. An autoclaved soil with both chemicals and a live soil with acetate alone were used as controls. Preliminary chemical analysis clearly showed the occurrence of biological selenate reduction coupled with acetate oxidation. Principal coordinate analysis and diversity indices of Illumina-derived sequence data showed dynamic succession and diversification of the microbial community in response to selenate reduction. High-resolution phylogenetic analysis revealed that the relative frequency of an operational taxonomic unit (OTU) from the genus Dechloromonas increased remarkably from 0.2% to 36% as a result of Se(VI) addition. Multiple OTUs representing less abundant microorganisms from the Rhodocyclaceae and Comamonadaceae families had significant increases as well. This study demonstrated that these microorganisms are concertedly involved in selenate reduction of the employed contaminated soil under anoxic conditions.


Assuntos
Microbiota , Ácido Selênico/metabolismo , Microbiologia do Solo , Solo/química , Acetatos/metabolismo , Anaerobiose , Biodegradação Ambiental , Comamonadaceae/metabolismo , Microbiota/genética , Oxirredução , Análise de Componente Principal , RNA Ribossômico 16S/genética , Rhodocyclaceae/metabolismo , Análise de Sequência de DNA , Fatores de Tempo
18.
Appl Environ Microbiol ; 80(3): 1126-31, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24296497

RESUMO

Medium- and long-chain fatty acids are present in organisms in esterified forms that serve as cell membrane constituents and storage compounds. A large number of organisms are known to accumulate lipophilic materials as a source of energy and carbon. We found a bacterium, designated GK12, that intrinsically accumulates free fatty acids (FFAs) as intracellular droplets without exhibiting cytotoxicity. GK12 is an obligatory anaerobic, mesophilic lactic acid bacterium that was isolated from a methanogenic reactor. Phylogenetic analysis based on 16S rRNA gene sequences showed that GK12 is affiliated with the family Erysipelotrichaceae in the phylum Firmicutes but is distantly related to type species in this family (less than 92% similarity in 16S rRNA gene sequence). Saturated fatty acids with carbon chain lengths of 14, 16, 18, and 20 were produced from glucose under stress conditions, including higher-than-optimum temperatures and the presence of organic solvents that affect cell membrane integrity. FFAs were produced at levels corresponding to up to 25% (wt/wt) of the dry cell mass. Our data suggest that FFA accumulation is a result of an imbalance between excess membrane fatty acid biosynthesis due to homeoviscous adaptation and limited ß-oxidation activity due to anaerobic growth involving lactic acid fermentation. FFA droplets were not further utilized as an energy and carbon source, even under conditions of starvation. A naturally occurring bacterium that accumulates significant amounts of long-chain FFAs with noncytotoxicity would provide useful strategies for microbial biodiesel production.


Assuntos
Citoplasma/química , Ácidos Graxos não Esterificados/análise , Bactérias Gram-Positivas/química , Bactérias Gram-Positivas/isolamento & purificação , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Glucose/metabolismo , Bactérias Gram-Positivas/classificação , Bactérias Gram-Positivas/genética , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Solventes , Estresse Fisiológico , Temperatura
19.
Appl Environ Microbiol ; 80(19): 5974-83, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25038101

RESUMO

The vertical transmission of symbiotic microorganisms is omnipresent in insects, while the evolutionary process remains totally unclear. The oriental chinch bug, Cavelerius saccharivorus (Heteroptera: Blissidae), is a serious sugarcane pest, in which symbiotic bacteria densely populate the lumen of the numerous tubule-like midgut crypts that the chinch bug develops. Cloning and sequence analyses of the 16S rRNA genes revealed that the crypts were dominated by a specific group of bacteria belonging to the genus Burkholderia of the Betaproteobacteria. The Burkholderia sequences were distributed into three distinct clades: the Burkholderia cepacia complex (BCC), the plant-associated beneficial and environmental (PBE) group, and the stinkbug-associated beneficial and environmental group (SBE). Diagnostic PCR revealed that only one of the three groups of Burkholderia was present in ∼89% of the chinch bug field populations tested, while infections with multiple Burkholderia groups within one insect were observed in only ∼10%. Deep sequencing of the 16S rRNA gene confirmed that the Burkholderia bacteria specifically colonized the crypts and were dominated by one of three Burkholderia groups. The lack of phylogenetic congruence between the symbiont and the host population strongly suggested host-symbiont promiscuity, which is probably caused by environmental acquisition of the symbionts by some hosts. Meanwhile, inspections of eggs and hatchlings by diagnostic PCR and egg surface sterilization demonstrated that almost 30% of the hatchlings vertically acquire symbiotic Burkholderia via symbiont-contaminated egg surfaces. The mixed strategy of symbiont transmission found in the oriental chinch bug might be an intermediate stage in evolution from environmental acquisition to strict vertical transmission in insects.


Assuntos
Burkholderia/fisiologia , Heterópteros/microbiologia , Animais , Sequência de Bases , Evolução Biológica , Burkholderia/genética , Burkholderia/isolamento & purificação , DNA Bacteriano/química , DNA Bacteriano/genética , Sistema Digestório/microbiologia , Meio Ambiente , Feminino , Hibridização in Situ Fluorescente , Masculino , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Simbiose
20.
Microbes Environ ; 39(1)2024.
Artigo em Inglês | MEDLINE | ID: mdl-38538312

RESUMO

N2O-reducing bacteria have been examined and harnessed to develop technologies that reduce the emission of N2O, a greenhouse gas produced by biological nitrogen removal. Recent investigations using omics and physiological activity approaches have revealed the ecophysiologies of these bacteria during nitrogen removal. Nevertheless, their involvement in| |anammox processes remain unclear. Therefore, the present study investigated the identity, genetic potential, and activity| |of N2O reducers in an anammox reactor. We hypothesized that N2O is limiting for N2O-reducing bacteria| |and an| |exogeneous N2O supply enriches as-yet-uncultured N2O-reducing bacteria. We conducted a 1200-day incubation of N2O-reducing bacteria in an anammox consortium using gas-permeable membrane biofilm reactors (MBfRs), which efficiently supply N2O in a bubbleless form directly to a biofilm grown on a gas-permeable membrane. A 15N tracer test indicated that the supply of N2O resulted in an enriched biomass with a higher N2O sink potential. Quantitative PCR and 16S rRNA amplicon sequencing revealed Clade II nosZ type-carrying N2O-reducing bacteria as protagonists of N2O sinks. Shotgun metagenomics showed the genetic potentials of the predominant Clade II nosZ-carrying bacteria, Anaerolineae and Ignavibacteria in MBfRs. Gemmatimonadota and non-anammox Planctomycetota increased their abundance in MBfRs despite their overall lower abundance. The implication of N2O as an inhibitory compound scavenging vitamin B12, which is essential for the synthesis of methionine, suggested its limited suppressive effect on the growth of B12-dependent bacteria, including N2O reducers. We identified Dehalococcoidia and Clostridia as predominant N2O sinks in an anammox consortium fed exogenous N2O because of the higher metabolic potential of vitamin B12-dependent biosynthesis.


Assuntos
Oxidação Anaeróbia da Amônia , Óxido Nitroso , Óxido Nitroso/metabolismo , RNA Ribossômico 16S/genética , Bactérias , Biofilmes , Vitamina B 12/metabolismo , Desnitrificação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa