Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Biol ; 21(8): e3002245, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37643155

RESUMO

Caloric restriction increases lifespan and improves ageing health, but it is unknown whether these outcomes can be separated or achieved through less severe interventions. Here, we show that an unrestricted galactose diet in early life minimises change during replicative ageing in budding yeast, irrespective of diet later in life. Average mother cell division rate is comparable between glucose and galactose diets, and lifespan is shorter on galactose, but markers of senescence and the progressive dysregulation of gene expression observed on glucose are minimal on galactose, showing that these are not intrinsic aspects of replicative ageing but rather associated processes. Respiration on galactose is critical for minimising hallmarks of ageing, and forced respiration during ageing on glucose by overexpression of the mitochondrial biogenesis factor Hap4 also has the same effect though only in a fraction of cells. This fraction maintains Hap4 activity to advanced age with low senescence and a youthful gene expression profile, whereas other cells in the same population lose Hap4 activity, undergo dramatic dysregulation of gene expression and accumulate fragments of chromosome XII (ChrXIIr), which are tightly associated with senescence. Our findings support the existence of two separable ageing trajectories in yeast. We propose that a complete shift to the healthy ageing mode can be achieved in wild-type cells through dietary change in early life without caloric restriction.


Assuntos
Restrição Calórica , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Galactose , Glucose
2.
PLoS Biol ; 21(8): e3002250, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37643194

RESUMO

The massive accumulation of extrachromosomal ribosomal DNA circles (ERCs) in yeast mother cells has been long cited as the primary driver of replicative ageing. ERCs arise through ribosomal DNA (rDNA) recombination, and a wealth of genetic data connects rDNA instability events giving rise to ERCs with shortened life span and other ageing pathologies. However, we understand little about the molecular effects of ERC accumulation. Here, we studied ageing in the presence and absence of ERCs, and unexpectedly found no evidence of gene expression differences that might indicate stress responses or metabolic feedback caused by ERCs. Neither did we observe any global change in the widespread disruption of gene expression that accompanies yeast ageing, altogether suggesting that ERCs are largely inert. Much of the differential gene expression that accompanies ageing in yeast was actually associated with markers of the senescence entry point (SEP), showing that senescence, rather than age, underlies these changes. Cells passed the SEP irrespective of ERCs, but we found the SEP to be associated with copy number amplification of a region of chromosome XII between the rDNA and the telomere (ChrXIIr) forming linear fragments up to approximately 1.8 Mb size, which arise in aged cells due to rDNA instability but through a different mechanism to ERCs. Therefore, although rDNA copy number increases dramatically with age due to ERC accumulation, our findings implicate ChrXIIr, rather than ERCs, as the primary driver of senescence during budding yeast ageing.


Assuntos
Saccharomyces cerevisiae , Telômero , Saccharomyces cerevisiae/genética , DNA Ribossômico/genética , Telômero/genética , Endossomos , Ribossomos
3.
J Lipid Res ; 59(9): 1671-1684, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29946055

RESUMO

In patients with asthma or chronic obstructive pulmonary disease, rhinovirus (RV) infections can provoke acute worsening of disease, and limited treatment options exist. Viral replication in the host cell induces significant remodeling of intracellular membranes, but few studies have explored this mechanistically or as a therapeutic opportunity. We performed unbiased lipidomic analysis on human bronchial epithelial cells infected over a 6 h period with the RV-A1b strain of RV to determine changes in 493 distinct lipid species. Through pathway and network analysis, we identified temporal changes in the apparent activities of a number of lipid metabolizing and signaling enzymes. In particular, analysis highlighted FA synthesis and ceramide metabolism as potential anti-rhinoviral targets. To validate the importance of these enzymes in viral replication, we explored the effects of commercially available enzyme inhibitors upon RV-A1b infection and replication. Ceranib-1, D609, and C75 were the most potent inhibitors, which confirmed that FAS and ceramidase are potential inhibitory targets in rhinoviral infections. More broadly, this study demonstrates the potential of lipidomics and pathway analysis to identify novel targets to treat human disorders.


Assuntos
Brônquios/citologia , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Metabolismo dos Lipídeos , Terapia de Alvo Molecular , Rhinovirus/fisiologia , Replicação Viral , Antivirais/farmacologia , Células HeLa , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Rhinovirus/efeitos dos fármacos
4.
Elife ; 72018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30274593

RESUMO

Transcription of protein coding genes is accompanied by recruitment of COMPASS to promoter-proximal chromatin, which methylates histone H3 lysine 4 (H3K4) to form H3K4me1, H3K4me2 and H3K4me3. Here, we determine the importance of COMPASS in maintaining gene expression across lifespan in budding yeast. We find that COMPASS mutations reduce replicative lifespan and cause expression defects in almost 500 genes. Although H3K4 methylation is reported to act primarily in gene repression, particularly in yeast, repressive functions are progressively lost with age while hundreds of genes become dependent on H3K4me3 for full expression. Basal and inducible expression of these genes is also impaired in young cells lacking COMPASS components Swd1 or Spp1. Gene induction during ageing is associated with increasing promoter H3K4me3, but H3K4me3 also accumulates in non-promoter regions and the ribosomal DNA. Our results provide clear evidence that H3K4me3 is required to maintain normal expression of many genes across organismal lifespan.


Assuntos
Envelhecimento/genética , Histona-Lisina N-Metiltransferase/genética , Processamento de Proteína Pós-Traducional/genética , Transcrição Gênica , Cromatina/genética , Regulação Fúngica da Expressão Gênica/genética , Histonas/genética , Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa