Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Cell Commun Signal ; 22(1): 360, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38992657

RESUMO

Inhibitory phosphatases, such as the inositol-5-phosphatase SHIP1 could potentially contribute to B-cell acute lymphoblastic leukemia (B-ALL) by raising the threshold for activation of the autoimmunity checkpoint, allowing malignant cells with strong oncogenic B-cell receptor signaling to escape negative selection. Here, we show that SHIP1 is differentially expressed across B-ALL subtypes and that high versus low SHIP1 expression is associated with specific B-ALL subgroups. In particular, we found high SHIP1 expression in both, Philadelphia chromosome (Ph)-positive and ETV6-RUNX1-rearranged B-ALL cells. As demonstrated by targeted knockdown of SHIP1 by RNA interference, proliferation of B-ALL cells in vitro and their tumorigenic spread in vivo depended in part on SHIP1 expression. We investigated the regulation of SHIP1, as an important antagonist of the AKT signaling pathway, by the B-cell-specific transcription factor Ikaros. Targeted restoration of Ikaros and pharmacological inhibition of the antagonistic casein kinase 2, led to a strong reduction in SHIP1 expression and at the same time to a significant inhibition of AKT activation and cell growth. Importantly, the tumor suppressive function of Ikaros was enhanced by a SHIP1-dependent additive effect. Furthermore, our study shows that all three AKT isoforms contribute to the pro-mitogenic and anti-apoptotic signaling in B-ALL cells. Conversely, hyperactivation of a single AKT isoform is sufficient to induce negative selection by increased oxidative stress. In summary, our study demonstrates the regulatory function of Ikaros on SHIP1 expression in B-ALL and highlights the relevance of sustained SHIP1 expression to prevent cells with hyperactivated PI3K/AKT/mTOR signaling from undergoing negative selection.


Assuntos
Linfócitos B , Fator de Transcrição Ikaros , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Fator de Transcrição Ikaros/genética , Fator de Transcrição Ikaros/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo , Humanos , Linfócitos B/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Animais , Camundongos
2.
Int J Mol Sci ; 25(4)2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38396845

RESUMO

Hepatocellular carcinoma (HCC), the main pathological type of liver cancer, is related to risk factors such as viral hepatitis, alcohol intake, and non-alcoholic fatty liver disease (NAFLD). The constitutive activation of the PI3K/AKT signaling pathway is common in HCC and has essential involvement in tumor progression. The serine/threonine kinase AKT has several downstream substrates, which have been implicated in the regulation of cellular metabolism. However, the contribution of each of the three AKT isoforms, i.e., AKT1, AKT2 and AKT3, to HCC metabolism has not been comprehensively investigated. In this study, we analyzed the functional role of AKT1, AKT2 and AKT3 in HCC metabolism. The overexpression of activated AKT1, AKT2 and AKT3 isoforms in the human HCC cell lines Hep3B and Huh7 resulted in higher oxygen consumption rate (OCR), ATP production, maximal respiration and spare respiratory capacity in comparison to vector-transduced cells. Vice versa, lentiviral vector-mediated knockdowns of each AKT isoform reduced OCR in both cell lines. Reduced OCR rates observed in the three AKT isoform knockdowns were associated with reduced extracellular acidification rates (ECAR) and reduced lactate production in both analyzed cell lines. Mechanistically, the downregulation of OCR by AKT isoform knockdowns correlated with an increased phosphorylation of the pyruvate dehydrogenase on Ser232, which negatively regulates the activity of this crucial gatekeeper of mitochondrial respiration. In summary, our data indicate that each of the three AKT isoforms is able to upregulate OCR, ECAR and lactate production independently of each other in human HCC cells through the regulation of the pyruvate dehydrogenase.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteínas Proto-Oncogênicas c-akt , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Ácido Láctico/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Oxirredutases , Oxigênio/metabolismo , Fosfatidilinositol 3-Quinases , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piruvatos
3.
Biochem Biophys Res Commun ; 524(2): 366-370, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32005521

RESUMO

SHIP1 is an inositol 5-phosphatase which is well established for its tumour suppressor potential in leukaemia. Enzymatically, two SHIP1 substrates, PtdIns(3,4,5)P3 and Ins(1,3,4,5)P4 have been identified to date. Additional substrates were found for the homologue SHIP2. In this study, we identified new inositol phosphate (InsP) substrates of SHIP1 by metal dye detection high-performance liquid chromatography and compared the substrate profiles of SHIP1 and SHIP2. We were able to verify Ins(1,3,4,5)P4 as a substrate of SHIP1 and interestingly found Ins(1,2,3,4,5)P5 and Ins(2,3,4,5)P4 to be preferably used as substrates and Ins(1,4,5,6)P4 and Ins(2,4,5,6)P4 to be weak substrates. All of those except Ins(2,3,4,5)P4 are also known substrates of SHIP2 indicating a possible exclusive role of Ins(2,3,4,5)P4 hydrolysis for SHIP1 but not SHIP2 function.


Assuntos
Fosfatos de Inositol/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo , Ensaios Enzimáticos , Humanos , Fosfatos de Inositol/química , Cinética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
4.
Nucleic Acids Res ; 43(11): 5560-71, 2015 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-25964300

RESUMO

Homozygosity for a natural deletion variant of the HIV-coreceptor molecule CCR5, CCR5Δ32, confers resistance toward HIV infection. Allogeneic stem cell transplantation from a CCR5Δ32-homozygous donor has resulted in the first cure from HIV ('Berlin patient'). Based thereon, genetic disruption of CCR5 using designer nucleases was proposed as a promising HIV gene-therapy approach. Here we introduce a novel TAL-effector nuclease, CCR5-Uco-TALEN that can be efficiently delivered into T cells by mRNA electroporation, a gentle and truly transient gene-transfer technique. CCR5-Uco-TALEN mediated high-rate CCR5 knockout (>90% in PM1 and >50% in primary T cells) combined with low off-target activity, as assessed by flow cytometry, next-generation sequencing and a newly devised, very convenient gene-editing frequency digital-PCR (GEF-dPCR). GEF-dPCR facilitates simultaneous detection of wild-type and gene-edited alleles with remarkable sensitivity and accuracy as shown for the CCR5 on-target and CCR2 off-target loci. CCR5-edited cells were protected from infection with HIV-derived lentiviral vectors, but also with the wild-type CCR5-tropic HIV-1BaL strain. Long-term exposure to HIV-1BaL resulted in almost complete suppression of viral replication and selection of CCR5-gene edited T cells. In conclusion, we have developed a novel TALEN for the targeted, high-efficiency knockout of CCR5 and a useful dPCR-based gene-editing detection method.


Assuntos
Desoxirribonucleases/genética , Técnicas de Inativação de Genes/métodos , Receptores CCR5/genética , Linhagem Celular , Reparo do DNA por Junção de Extremidades , Desoxirribonucleases/química , Eletroporação , HIV/fisiologia , Infecções por HIV/genética , Humanos , Mutação , Reação em Cadeia da Polimerase , RNA Mensageiro , Linfócitos T/virologia , Transfecção
5.
Inn Med (Heidelb) ; 65(6): 617-623, 2024 Jun.
Artigo em Alemão | MEDLINE | ID: mdl-38748280

RESUMO

BACKGROUND: Duchenne muscular dystrophy (DMD) is a severe monogenic hereditary disease with early manifestation and a progressive course. Treatment options have so far been limited. Gene therapy opens up new options for DMD patients. OBJECTIVES: Against the background of a further death following DMD gene therapy, the side effects and risks of the gene therapeutics already approved or undergoing clinical trials will be evaluated and alternative gene therapeutics will be described. Based thereon, the future of DMD gene therapy will be discussed. CURRENT DATA: For the first time, in June 2023, delandistrogene moxeparvovec (SRP-9001), a gene replacement therapy based on an adeno-associated virus (AAV) vector, was approved in the USA for children aged 4-5 years with DMD. Other promising gene therapies are in preclinical development or clinical trials, including CRISPR/Cas9-mediated strategies to restore dystrophin expression. Two deaths following DMD gene therapy with high-dose AAV vectors were attributed to AAV-mediated immune responses. The pre-existing disease underlying the therapy is most likely involved in the fatal AAV toxicity. CONCLUSIONS: Although gene therapy applications of AAV vectors are generally considered safe, the systemic administration of high vector doses can lead to severe side effects with a potentially fatal outcome in individual patients, especially after activation of the immune system. In the future, new methods for immunosuppression, reduction of AAV dose and alternative vectors will therefore increasingly come to the fore.


Assuntos
Dependovirus , Terapia Genética , Vetores Genéticos , Distrofia Muscular de Duchenne , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Humanos , Terapia Genética/efeitos adversos , Terapia Genética/métodos , Dependovirus/genética , Vetores Genéticos/genética , Vetores Genéticos/efeitos adversos , Pré-Escolar , Criança , Masculino
6.
Cancers (Basel) ; 16(2)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38254824

RESUMO

BACKGROUND: CAR-T cell therapy has shown impressive results and is now part of standard-of-care treatment of B-lineage malignancies, whereas the treatment of myeloid diseases has been limited by the lack of suitable targets. CD45 is expressed on almost all types of blood cells including myeloid leukemia cells, but not on non-hematopoietic tissue, making it a potential target for CAR-directed therapy. Because of its high expression on T and NK cells, fratricide is expected to hinder CD45CAR-mediated therapy. Due to its important roles in effector cell activation, signal transduction and cytotoxicity, CD45 knockout aimed at preventing fratricide in T and NK cells has been expected to lead to considerable functional impairment. METHODS: CD45 knockout was established on T and NK cell lines using CRISPR/Cas9-RNPs and electroporation, and the successful protocol was transferred to primary T cells. A combined protocol was developed enabling CD45 knockout and retroviral transduction with a third-generation CAR targeting CD45 or CD19. The functionality of CD45ko effector cells, CD45ko/CD45CAR-T and CD45ko/CD19CAR-T cells was studied using proliferation as well as short- and long-term cytotoxicity assays. RESULTS: As expected, the introduction of a CD45-CAR into T cells resulted in potent fratricide that can be avoided by CD45 knockout. Unexpectedly, the latter had no negative impact on T- and NK-cell proliferation in vitro. Moreover, CD45ko/CD45CAR-T cells showed potent cytotoxicity against CD45-expressing AML and lymphoma cell lines in short-term and long-term co-culture assays. A pronounced cytotoxicity of CD45ko/CD45CAR-T cells was maintained even after four weeks of culture. In a further setup, we confirmed the conserved functionality of CD45ko cells using a CD19-CAR. Again, the proliferation and cytotoxicity of CD45ko/CD19CAR-T cells showed no differences from those of their CD45-positive counterparts in vitro. CONCLUSIONS: We report the efficient production of highly and durably active CD45ko/CAR-T cells. CD45 knockout did not impair the functionality of CAR-T cells in vitro, irrespective of the target antigen. If their activity can be confirmed in vivo, CD45ko/CD45CAR-T cells might, for example, be useful as part of conditioning regimens prior to stem cell transplantation.

7.
Cell Signal ; 121: 111270, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38909932

RESUMO

BACKGROUND: In breast cancer, over one third of all patients harbor a somatic mutation in the PIK3CA gene, encoding the p110α catalytic subunit of the phosphatidylinositol 3-kinase (PI3K) in their tumor cells. Circulating tumor cells (CTCs) are cells shed from the primary tumor into the blood stream. Recently, the long-term stable breast cancer CTC-ITB-01 cell line with tumorigenic and metastatic capacity was established from liquid biopsy derived cells. The oncogenic hotspot PIK3CA mutation H1047R (kinase domain) was detected in the primary tumor, CTCs and metastasis of the same patient. Other PIK3CA mutations located within the C2 domain (E418K and E453K) were detected in the CTCs and the vaginal metastasis but not in the primary tumor. The goal of our study was to functionally characterize the impact of the rare E418K and E453K mutations within the C2 domain that were not detected in the primary tumor. METHODS: PIK3CA mutations E418K, E453K, H1047R were generated by site-directed mutagenesis and stably overexpressed in breast cancer cells by lentiviral transduction. Subsequent signaling pathway activation was examined by western blot analysis. The impact of PIK3CA mutations on biological processes was studied by live cell imaging using the Incucyte Zoom system. Structural modeling was conducted in Pymol. The membrane localization of the mutants was evaluated by separating the cytosolic and membrane fraction using ultracentrifugation. Drug susceptibility of CTC-ITB-01 cells was analyzed by live cell imaging. RESULTS: Western blot analysis of human MDA-MB-231, MCF-7 and T47D breast cancer cells stably overexpressing either the PIK3CA wildtype (WT) or one of the E418K, E453K or H1047R mutants revealed a significant increase in AKT phosphorylation in both C2 mutants (E418K and E453K) and the kinase domain mutant H1047R. Functional analysis showed a significantly increased proliferation of MDA-MB-231 cells overexpressing the E453K and H1047R mutants. Migration was increased in all cells overexpressing WT and each of the mutants. Interestingly, invasion and chemotaxis were only enhanced in the MDA-MB-231 cells overexpressing the C2 domain mutants, i.e. E418K and E453K. In addition, membrane localization of the two C2 domain mutants was increased. Structural modeling of the E453K mutation suggests a disruption of the interaction between the negative regulatory domain of the p85α subunit and the p110α catalytic subunit as a potential mechanism leading to the observed activation of PI3K/AKT/mTOR signaling. Dual targeting of AKT/mTOR pathway by MK2206 and RAD001 leads to very strong synergistic effects (IC50 MK2206: 148 nM, IC50 RAD001: 15 nM) with respect to proliferation in the CTC-ITB-01 line through apoptosis induction. CONCLUSIONS: Our results demonstrate that PIK3CA C2 domain mutations activate PI3K downstream AKT signaling and can increase proliferation, migration and invasion after stable lentiviral transduction. Although both investigated mutations - E418K and E453K - are located within the C2 domain, a different molecular mechanism can be proposed. The PIK3CA mutated CTC-ITB-01 shows a high susceptibility against dual inhibition of AKT/mTOR. Further studies are required to fully elucidate the oncogenic potential of rare PIK3CA mutations.

8.
Mar Drugs ; 11(8): 3000-14, 2013 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-23966033

RESUMO

The antiviral activity of different structure fucoidans (α-l-fucans and galactofucans) was studied using two model viral systems based on a lentiviral vectors and a replication competent Moloney murine leukemia virus (Mo-MuLV). It was found that investigated fucoidans have no cytotoxic effects on Jurkat and SC-1cell at the concentration range of 0.001-100 µg/mL. Fucoidans with different efficiency suppressed transduction of Jurkat cell line by pseudo-HIV-1 particles carrying the envelope protein of HIV-1 and infection of SC-1 cells by Mo-MuLV. According to our data, all natural fucoidans can be considered as potential anti-HIV agents regardless of their carbohydrate backbone and degree of sulfating, since their activity is shown at low concentrations (0.001-0.05 µg/mL). High molecular weight fucoidans isolated from Saccharina cichorioides (1.3-α-l-fucan), and S. japonica (galactofucan) were the most effective inhibitors.


Assuntos
Fármacos Anti-HIV/farmacologia , HIV-1/efeitos dos fármacos , Vírus da Leucemia Murina de Moloney/efeitos dos fármacos , Polissacarídeos/farmacologia , Fármacos Anti-HIV/administração & dosagem , Fármacos Anti-HIV/química , Antivirais/administração & dosagem , Antivirais/farmacologia , Linhagem Celular , Relação Dose-Resposta a Droga , Vetores Genéticos , Humanos , Técnicas In Vitro , Células Jurkat , Lentivirus/genética , Peso Molecular , Phaeophyceae/química , Polissacarídeos/administração & dosagem , Polissacarídeos/química
9.
Cells ; 12(13)2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37443832

RESUMO

Acute lymphoblastic leukemia (ALL) is the most common cause of cancer-related death in children. Despite significantly increased chances of cure, especially for high-risk ALL patients, it still represents a poor prognosis for a substantial fraction of patients. Misregulated proteins in central switching points of the cellular signaling pathways represent potentially important therapeutic targets. Recently, the inositol phosphatase SHIP1 (SH2-containing inositol 5-phosphatase) has been considered as a tumor suppressor in leukemia. SHIP1 serves as an important negative regulator of the PI3K/AKT signaling pathway, which is frequently constitutively activated in primary T-ALL. In contrast to other reports, we show for the first time that SHIP1 has not been lost in T-ALL cells, but is strongly downregulated. Reduced expression of SHIP1 leads to an increased activation of the PI3K/AKT signaling pathway. SHIP1-mRNA expression is frequently reduced in primary T-ALL samples, which is recapitulated by the decrease in SHIP1 expression at the protein level in seven out of eight available T-ALL patient samples. In addition, we investigated the change in the activity profile of tyrosine and serine/threonine kinases after the restoration of SHIP1 expression in Jurkat T-ALL cells. The tyrosine kinase receptor subfamilies of NTRK and PDGFR, which are upregulated in T-ALL subgroups with low SHIP1 expression, are significantly disabled after SHIP1 reconstitution. Lentiviral-mediated reconstitution of SHIP1 expression in Jurkat cells points to a decreased cellular proliferation upon transplantation into NSG mice in comparison to the control cohort. Together, our findings will help to elucidate the complex network of cell signaling proteins, further support a functional role for SHIP1 as tumor suppressor in T-ALL and, much more importantly, show that full-length SHIP1 is expressed in T-ALL samples.


Assuntos
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Proteínas Proto-Oncogênicas c-akt , Animais , Camundongos , Camundongos Endogâmicos , Fosfatidilinositol 3-Quinases/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transplante Heterólogo , Humanos
10.
Sci Rep ; 11(1): 136, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420228

RESUMO

Recent research indicated the potential of cold physical plasma in cancer therapy. The plethora of plasma-derived reactive oxygen and nitrogen species (ROS/RNS) mediate diverse antitumor effects after eliciting oxidative stress in cancer cells. We aimed at exploiting this principle using a newly designed dual-jet neon plasma source (Vjet) to treat colorectal cancer cells. A treatment time-dependent ROS/RNS generation induced oxidation, growth retardation, and cell death within 3D tumor spheroids were found. In TUM-CAM, a semi in vivo model, the Vjet markedly reduced vascularized tumors' growth, but an increase of tumor cell immunogenicity or uptake by dendritic cells was not observed. By comparison, the argon-driven single jet kINPen, known to mediate anticancer effects in vitro, in vivo, and in patients, generated less ROS/RNS and terminal cell death in spheroids. In the TUM-CAM model, however, the kINPen was equivalently effective and induced a stronger expression of immunogenic cancer cell death (ICD) markers, leading to increased phagocytosis of kINPen but not Vjet plasma-treated tumor cells by dendritic cells. Moreover, the Vjet was characterized according to the requirements of the DIN-SPEC 91315. Our results highlight the plasma device-specific action on cancer cells for evaluating optimal discharges for plasma cancer treatment.


Assuntos
Neoplasias Colorretais/terapia , Neônio/farmacologia , Gases em Plasma/farmacologia , Animais , Linhagem Celular Tumoral , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/fisiopatologia , Humanos , Morte Celular Imunogênica/efeitos dos fármacos , Camundongos , Neônio/química , Estresse Oxidativo/efeitos dos fármacos , Fagocitose , Gases em Plasma/química , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Esferoides Celulares
11.
Blood ; 111(9): 4532-41, 2008 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-18326819

RESUMO

Mef2c is a MADS (MCM1-agamous-deficient serum response factor) transcription factor best known for its role in muscle and cardiovascular development. A causal role of up-regulated MEF2C expression in myelomonocytic acute myeloid leukemia (AML) has recently been demonstrated. Due to the pronounced monocytic component observed in Mef2c-induced AML, this study was designed to assess the importance of Mef2c in normal myeloid differentiation. Analysis of bone marrow (BM) cells manipulated to constitutively express Mef2c demonstrated increased monopoiesis at the expense of granulopoiesis, whereas BM isolated from Mef2c(Delta/-) mice showed reduced levels of monocytic differentiation in response to cytokines. Mechanistic studies showed that loss of Mef2c expression correlated with reduced levels of transcripts encoding c-Jun, but not PU.1, C/EBPalpha, or JunB transcription factors. Inhibiting Jun expression by short-interfering RNA impaired Mef2c-mediated inhibition of granulocyte development. Moreover, retroviral expression of c-Jun in BM cells promoted monocytic differentiation. The ability of Mef2c to modulate cell-fate decisions between monocyte and granulocyte differentiation, coupled with its functional sensitivity to extracellular stimuli, demonstrate an important role in immunity--and, consistent with findings of other myeloid transcription factors, a target of oncogenic lesions in AML.


Assuntos
Células Mieloides/citologia , Fatores de Regulação Miogênica/fisiologia , Proteínas Proto-Oncogênicas c-jun/fisiologia , Animais , Células da Medula Óssea , Diferenciação Celular , Granulócitos/citologia , Hematopoese , Fatores de Transcrição MEF2 , Camundongos , Camundongos Mutantes , Monócitos/citologia , Fatores de Transcrição/fisiologia
12.
J Cell Physiol ; 221(1): 232-41, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19507191

RESUMO

Recent reports demonstrate that PKR is constitutively active in a variety of tumors and is required for tumor maintenance and growth. Here we report acute leukemia cell lines contain elevated levels of p-T451 PKR and PKR activity as compared to normal controls. Inhibition of PKR with a specific inhibitor, as well as overexpression of a dominant-negative PKR, inhibited cell proliferation and induced cell death. Interestingly, PKR inhibition using the specific inhibitor resulted in a time-dependent augmentation of AKT S473 and GSK-3alpha S21 phosphorylation, which was confirmed in patient samples. Increased phosphorylation of AKT and GSK-3alpha was not dependent on PI3K activity. PKR inhibition augmented levels of p-S473 AKT and p-S21/9 GSK-3alpha/beta in the presence of the PI3K inhibitor, LY294002, but was unable to augment GSK-3alpha or beta phosphorylation in the presence of the AKT inhibitor, A443654. Pre-treatment with the PKR inhibitor blocked the ability of A443654 and LY294002 to promote phosphorylation of eIF2alpha, indicating the mechanism leading to AKT phosphorylation and activation did not require eIF2alpha phosphorylation. The effects of PKR inhibition on AKT and GSK-3 phosphorylation were found to be, in part, PP2A-dependent. These data indicate that, in acute leukemia cell lines, constitutive basal activity of PKR is required for leukemic cell homeostasis and growth and functions as a negative regulator of AKT, thereby increasing the pool of potentially active GSK-3.


Assuntos
Quinase 3 da Glicogênio Sintase/metabolismo , Leucemia/enzimologia , Leucemia/patologia , Proteína Fosfatase 2/metabolismo , eIF-2 Quinase/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , eIF-2 Quinase/antagonistas & inibidores
13.
Cancer Res ; 67(2): 537-45, 2007 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-17234761

RESUMO

Mutations in the RUNX1 gene are found at high frequencies in minimally differentiated acute myelogenous leukemia. In addition to null mutations, many of the mutations generate Runx1 DNA-binding (RDB) mutants. To determine if these mutants antagonize wild-type protein activity, cDNAs were transduced into murine bone marrow or human cord blood cells using retroviral vectors. Significantly, the RDB mutants did not act in a transdominant fashion in vivo to disrupt Runx1 activity in either T-cell or platelet development, which are highly sensitive to Runx1 dosage. However, RDB mutant expression impaired expansion and differentiation of the erythroid compartment in which Runx1 expression is normally down-regulated, showing that a RDB-independent function is incompatible with erythroid differentiation. Significantly, both bone marrow progenitors expressing RDB mutants or deficient for Runx1 showed increased replating efficiencies in vitro, accompanied by the accumulation of myeloblasts and dysplastic progenitors, but the effect was more pronounced in RDB cultures. Disruption of the interface that binds CBFbeta, an important cofactor of Runx1, did not impair RDB mutant replating activity, arguing against inactivation of Runx1 function by CBFbeta sequestration. We propose that RDB mutants antagonize Runx1 function in early progenitors by disrupting a critical balance between DNA-binding-independent and DNA-binding-dependent signaling.


Assuntos
Diferenciação Celular/genética , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Animais , Subunidade alfa 2 de Fator de Ligação ao Core/antagonistas & inibidores , Subunidade alfa 2 de Fator de Ligação ao Core/biossíntese , Subunidade alfa 2 de Fator de Ligação ao Core/deficiência , Subunidade beta de Fator de Ligação ao Core/metabolismo , DNA Complementar/genética , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Eritropoese/genética , Vetores Genéticos/genética , Hematopoese/genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/fisiologia , Humanos , Leucemia Mieloide Aguda/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mutagênese Sítio-Dirigida , Retroviridae/genética , Transdução Genética
14.
Mol Ther Nucleic Acids ; 13: 256-274, 2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-30317165

RESUMO

The recently discovered CRISPR/Cas9 system is widely used in basic research and is a useful tool for disease modeling and gene editing therapies. However, long-term expression of DNA-modifying enzymes can be associated with cytotoxicity and is particularly unwanted in clinical gene editing strategies. Because current transient expression methods may still suffer from cytotoxicity and/or low efficiency, we developed non-integrating retrovirus-based CRISPR/Cas9 all-in-one particles for targeted gene knockout. By redirecting the gammaretroviral packaging machinery, we transiently delivered Streptococcus pyogenes Cas9 (SpCas9) mRNA and single-guide RNA transcripts into various (including primary) cell types. Spatiotemporal co-delivery of CRISPR/Cas9 components resulted in efficient disruption of a surrogate reporter gene, as well as functional knockout of endogenous human genes CXCR4 and TP53. Although acting in a hit-and-run fashion, knockout efficiencies of our transient particles corresponded to 52%-80% of those obtained from constitutively active integrating vectors. Stable SpCas9 overexpression at high doses in murine NIH3T3 cells caused a substantial G0/G1 arrest accompanied by reduced cell growth and metabolic activity, which was prevented by transient SpCas9 transfer. In summary, the non-integrating retrovirus-based vector particles introduced here allow efficient and dose-controlled delivery of CRISPR/Cas9 components into target cells.

15.
Oncotarget ; 8(4): 6155-6168, 2017 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-28008153

RESUMO

Despite improvement of therapeutic treatments for breast cancer, the development of brain metastases has become a major limitation to life expectancy for many patients. Brain metastases show very commonly alterations in EGFR and HER2 driven pathways, of which PTEN is an important regulator. Here, we analyzed PTEN expression in 111 tissue samples of breast cancer brain metastases (BCBM). Loss of PTEN was found in a substantial proportion of BCBM samples (48.6%) and was significantly associated with triple-negative breast cancer (67.5%, p = 0.001) and a shorter survival time after surgical resection of brain metastases (p = 0.048). Overexpression of PTEN in brain-seeking MDA-MB-231 BR cells in vitro reduced activation of the AKT pathway, notably by suppression of Akt1 kinase activity. Furthermore, the migration of MDA-MB-231 BR cells in vitro was promoted by co-culturing with both astrocytes and microglial cells. Interestingly, when PTEN was overexpressed the migration was significantly inhibited. Moreover, in an ex vivo organotypic brain slice model, PTEN overexpression reduced invasion of tumor cells. This was accompanied by reduced astrocyte activation that was mediated by autocrine and paracrine activation of GM-CSF/ CSF2RA and AKT/ PTEN pathways. In conclusion, loss of PTEN is frequently detected in triple-negative BCBM patients and associated with poor prognosis. The findings of our functional studies suggest that PTEN loss promotes a feedback loop between tumor cells and glial cells, which might contribute to disease progression.


Assuntos
Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/secundário , Neuroglia/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias Encefálicas/cirurgia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Técnicas de Cocultura , Progressão da Doença , Retroalimentação Fisiológica , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Invasividade Neoplásica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Análise de Sobrevida , Neoplasias de Mama Triplo Negativas/cirurgia
16.
Oncogene ; 24(51): 7579-91, 2005 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-16044150

RESUMO

The t(12;21) translocation, generating the TEL/AML1 fusion protein, is the most common genetic lesion in childhood cancer. Using a bone marrow transplantation model, we demonstrate that TEL/AML1 expression impinges on normal hematopoietic differentiation, leading to the in vivo accumulation and persistence of an early progenitor compartment with a Sca1(+)/Kit(hi)/CD11b(+) phenotype and an increased self-renewal capacity, as documented by replating assays in vitro. Differentiation of these cells is not blocked, but the frequency of mature blood cells arising from TEL/AML1-transduced progenitors is low. Impaired differentiation is prominently observed in the pro-B-cell compartment, resulting in an proportional increase in early progenitors in vivo, consistent with the t(12;21) ALL phenotype. Despite the accumulation of both multipotent and B-cell progenitors in vivo, no leukemia induction was observed during an observation period of over 1 year. These results are consistent with findings in twins with concordant ALL, showing that TEL/AML1 generates a preleukemic clone in utero that persists for several years in a clinically covert fashion. Furthermore, our studies showed that the pointed domain of TEL/AML1, which recruits transcriptional repressors and directs oligomerization with either TEL/AML1 or wild-type TEL, was essential for the observed differentiation impairment and could not be replaced with another oligomerization domain.


Assuntos
Transformação Celular Neoplásica/genética , Subunidade alfa 2 de Fator de Ligação ao Core/biossíntese , Proteínas de Fusão Oncogênica/biossíntese , Pré-Leucemia/genética , Animais , Linfócitos B , Transplante de Medula Óssea , Diferenciação Celular , Cromossomos Humanos Par 12 , Cromossomos Humanos Par 21 , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/fisiologia , Células-Tronco Hematopoéticas , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/fisiologia , Fenótipo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Pré-Leucemia/fisiopatologia , Translocação Genética
17.
Leuk Lymphoma ; 47(7): 1387-91, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16923573

RESUMO

RAS genes, predominantly N-RAS and K-RAS, have been implicated in the pathogenesis of acute myeloid leukemia (AML), due to activating RAS mutations detectable in approximately 20% of AML patients. In the present study, RAS proteins were detected in their activated, GTP-bound form, in AML patients (n = 10) not expressing mutated forms of H-RAS, K-RAS and N-RAS. Further analysis revealed the simultaneous presence of N-RAS and K-RAS proteins in the GTP-bound state in seven out of 10 AML samples. In four out of 10 samples the levels of RAS-GTP were comparable to an AML cell line (TF-1) with an activating N-RAS mutation (Q61P). The detection of RAS-GTP in AML patients without RAS mutations further supports a functional role of RAS proteins in the pathogenesis of AML and may explain the observed effects of RAS inhibitors in some AML patients in the absence of activating RAS mutations.


Assuntos
Análise Mutacional de DNA , Regulação Neoplásica da Expressão Gênica , Genes ras/genética , Guanosina Trifosfato/química , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Mutação , Proteínas ras/biossíntese , Proteínas ras/genética , Adulto , Idoso , Feminino , Guanosina Trifosfato/metabolismo , Células HeLa , Humanos , Masculino , Pessoa de Meia-Idade , Fosforilação , Ligação Proteica
18.
Oncogene ; 22(46): 7170-80, 2003 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-14562045

RESUMO

Growth factor independence of hematopoietic cells can be induced by ectopic expression of a variety of oncogenes encoding receptor or cytoplasmic tyrosine kinases. To examine whether the activation of tyrosine kinases occurs in factor-independent mutants in vivo, the tyrosine-phosphorylated proteins from 14 factor-independent mutants of a GM-CSF-dependent cell line (TF-1) were analysed. These mutants did not secrete any growth-stimulating activity for TF-1 cells, suggesting that activation of intracellular signaling rather than an autocrine stimulation by secreted growth factors is responsible for their factor-independent growth. In 11 out of 14 GM-CSF-independent mutants analysed, a constitutively tyrosine-phosphorylated protein of 60 kDa was detected, which was subsequently identified as p60(c-Src). The kinase activity of p60(c-Src) was increased up to 12-fold in these mutants, which was at least in part due to overexpression of the c-src gene on the RNA and protein level. The Src substrate Sam68 showed an increased phosphorylation in mutants with high Src activity, suggesting that p60(c-Src) triggers downstream signaling in these cells. Treatment of the factor-independent mutants with the Src kinase inhibitor PP2 resulted in a reduced proliferation, demonstrating that Src kinases are essential for these cells for maximal proliferation. Further analysis of factor-independent mutants with low or undetectable Src activity revealed a constitutive phosphorylation of the common beta chain of the GM-CSF receptor and STAT5. Our data indicate an increase in the expression and total activity of endogenous p60(c-Src) in several GM-CSF-independent TF-1 mutants, further underlining the role of Src in the process of autonomous growth of hematopoietic cells.


Assuntos
Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Proteínas Proto-Oncogênicas pp60(c-src)/genética , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Sequência de Bases , Divisão Celular/efeitos dos fármacos , Células Clonais , Primers do DNA , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Leucemia Eritroblástica Aguda , Mutagênese , Fosforilação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas
19.
J Invasive Cardiol ; 15(7): 385-9, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12840235

RESUMO

OBJECTIVE: Patients with acute myocardial infarction complicated by cardiogenic shock have a high mortality despite the use of early reperfusion therapies with thrombolysis or percutaneous coronary intervention (PCI). Therefore, there is still need to evaluate therapy strategies in these patients. DESIGN: The REO-SHOCK trial was a prospective, non-randomized study, aimed at evaluation of a routine strategy of early abciximab and PCI in a high-risk group of acute ST elevation myocardial infarction (STEMI) patients with cardiogenic shock. RESULTS: Patients (n = 40) planned for coronary angioplasty or stenting received abciximab (0.25 mg/kg bolus followed by 0.125 mg/kg/minute over 12 hours), heparin and aspirin. The intervention was successful in 92.5% of the patients and achieved Thrombolysis In Myocardial Infarction (TIMI) grade 3 patency in 32 patients (80%). The primary endpoint, total mortality after 30 days, was observed in 42.5% (17/40), and was significantly different between patients aged > 75 years and patients aged 75 years (91% versus 24%, respectively; p < 0.001). Major bleeding occurred in 2 patients (5%), but stroke occurred in none. CONCLUSION: A strategy of abciximab with primary PCI in high-risk patients with cardiogenic shock is safe, associated with a high procedural success rate and seems to improve outcomes in patients < 75 years old.


Assuntos
Angioplastia Coronária com Balão/métodos , Anticorpos Monoclonais/uso terapêutico , Fragmentos Fab das Imunoglobulinas/uso terapêutico , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/terapia , Inibidores da Agregação Plaquetária/uso terapêutico , Choque Cardiogênico/tratamento farmacológico , Choque Cardiogênico/terapia , Abciximab , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/complicações , Infarto do Miocárdio/mortalidade , Estudos Prospectivos , Choque Cardiogênico/etiologia , Choque Cardiogênico/mortalidade , Stents
20.
Hum Gene Ther Methods ; 23(6): 408-15, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23240650

RESUMO

Primary human B cells are an attractive target for gene-therapeutic applications, but have been found to be relatively resistant toward transduction with lentiviral vectors (LVVs), even though a number of different envelope pseudotypes were tested. Moreover, low transgene expression in primary human B cells has impeded the use of LVVs for this target cell. We investigated the transduction potential of gibbon-ape leukemia virus (GALV) Env-pseudotyped LVVs for primary human B cells. By establishing optimized transduction kinetics and multiplicities of infection, we were able to regularly obtain transduction efficiencies of more than 50% in CD40L-activated B cells. Noteworthy, with the use of GALV-pseudotyped LVVs we could achieve a more than 10-fold higher yield of transduced activated B cells in direct comparison with LVVs pseudotyped with measles virus glycoproteins. Phenotyping of transduced primary B cells revealed a majority of memory B cells, a long-lived phenotype, presumed to be well suited for enduring therapeutic interventions. Finally, by combining the enhancer (Eµ) and the matrix/scaffold-attachment regions (MARs) of the human immunoglobulin heavy chain with the promoter of spleen focus-forming virus (SFFV) we aimed at generating a novel LVV particularly suitable for B cell transgenesis. We show that the optimized vector facilitated significantly higher transgene expression in various B cell lines and, more importantly, primary human B cells (mean factor of three). In summary, we have established a novel protocol for the efficient lentiviral transduction of primary human B cells and have improved transgene expression in B cells by a specific vector modification.


Assuntos
Linfócitos B/metabolismo , Vetores Genéticos/genética , Vírus da Leucemia do Macaco Gibão/genética , Linfócitos B/citologia , Linfócitos B/imunologia , Antígenos CD40/metabolismo , Células Cultivadas , Vetores Genéticos/metabolismo , Células HEK293 , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Regiões de Interação com a Matriz/genética , Regiões Promotoras Genéticas , Vírus Formadores de Foco no Baço/genética , Transdução Genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa