Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell Environ ; 46(3): 812-830, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36541032

RESUMO

Elevated CO2 (eCO2 ) reduces the impact of drought, but the mechanisms underlying this effect remain unclear. Therefore, we used a multidisciplinary approach to investigate the interaction of drought and eCO2 in Arabidopsis thaliana leaves. Transcriptome and subsequent metabolite analyses identified a strong induction of the aliphatic glucosinolate (GL) biosynthesis as a main effect of eCO2 in drought-stressed leaves. Transcriptome results highlighted the upregulation of ABI5 and downregulation of WRKY63 transcription factors (TF), known to enhance and inhibit the expression of genes regulating aliphatic GL biosynthesis (e.g., MYB28 and 29 TFs), respectively. In addition, eCO2 positively regulated aliphatic GL biosynthesis by MYB28/29 and increasing the accumulation of GL precursors. To test the role of GLs in the stress-mitigating effect of eCO2 , we investigated the effect of genetic perturbations of the GL biosynthesis. Overexpression of MYB28, 29 and 76 improved drought tolerance by inducing stomatal closure and maintaining plant turgor, whereas loss of cyp79f genes reduced the stress-mitigating effect of eCO2 and decreased drought tolerance. Overall, the crucial role of GL metabolism in drought stress mitigation by eCO2 could be a beneficial trait to overcome future climate challenges.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Glucosinolatos/metabolismo , Dióxido de Carbono/metabolismo , Secas , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Front Plant Sci ; 13: 1025969, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36388588

RESUMO

The synthesis of indole-3-acetonitrile (IAN) from the indolic glucosinolate (iGSL) glucobrassicin (GB) is a unique trait of members of the Brassicales. To assess the contribution of this pathway to indole-3-acetic acid (IAA) synthesis under stress conditions, drought stress (DS) experiments with Arabidopsis thaliana were performed in vitro. Analysis of GSLs in DS plants revealed higher contents of GB in shoots and roots compared to control plants. Deuterium incorporation experiments showed the highest turnover of GB compared to all other GSLs during drought conditions. Evidence suggests the involvement of the thioglucosidase BGLU18 in the degradation of GB. The nitrile specifier proteins NSP1 and NSP5 are known to direct the GSL hydrolysis towards formation of IAN. Nitrilases like NIT2 are able to subsequently synthesize IAA from IAN. Expression of BGLU18, NSP1, NSP5 and NIT2 and contents of GB, IAN and IAA were significantly elevated in DS plants compared to control plants suggesting the increased use of GB as IAA source. Significantly higher contents of reactive oxygen species in DS bglu18 and epithionitrile specifier protein (esp) mutants compared to Col-0 indicate higher stress levels in these mutants highlighting the need for both proteins in DS plants. Furthermore, GB accumulation in leaves was higher in both mutants during DS when compared to Col-0 indicating enhanced synthesis of GB due to a lack of breakdown products. This work provides the first evidence for the breakdown of iGSLs to IAN which seems to be used for synthesis of IAA in DS A. thaliana plants.

3.
Pathogens ; 10(5)2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-34066620

RESUMO

The present study investigated the changes in total and individual glucosinolates (GSLs) in roots and leaves of different clubroot-resistant and -susceptible oilseed rape cultivars following artificial inoculation with Plasmodiophora brassicae isolates with different virulence. The results showed significant differences in clubroot incidence and severity as well as in the amount of total and individual glucosinolates between oilseed rape cultivars in response to virulence of the pathogen. Single among with total aliphatic and total indolic glucosinolate contents were significantly lower in leaves of susceptible cultivars compared to resistant ones due to the infection. Similarly, single and total aliphatic as well as indolic glucosinolate contents in roots were lower in susceptible cultivars compared to resistant cultivars analyzed. The different isolates of P. brassicae seem to differ in their ability to reduce gluconasturtiin contents in the host. The more aggressive isolate P1 (+) might be able to suppress gluconasturtiin synthesis of the host in a more pronounced manner compared to the isolate P1. A possible interaction of breakdown products of glucobrassicin with the auxin receptor transport inhibitor response 1 (TIR1) is hypothesized and its possible effects on auxin signaling in roots and leaves of resistant and susceptible cultivars is discussed. A potential interplay between aliphatic and indolic glucosinolates that might be involved in water homeostasis in resistant cultivars is explained.

4.
Plant Physiol Biochem ; 163: 166-177, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33848929

RESUMO

Knowledge about Solanaceae species naturally adapted to salinity is scarce, despite the fact that a considerable number of Solanaceae has been reported growing in saline environments. Lycium humile Phil. inhabits extreme saline soils in the Altiplano-Puna region (Central Andes, South America) and represents a promising experimental model to study salt tolerance in Solanaceae plants. Seeds, leaves and roots were collected from a saline environment (Salar del Diablo, Argentina). Seeds were scarified and 30 days after germination salt treatments were applied by adding NaCl salt pulses (up to 750 or 1000 mM). Different growth parameters were evaluated, and leaf spectral reflectance, endogenous phytohormone levels, antioxidant capacity, proline and elemental content, and morpho-anatomical characteristics in L. humile under salinity were analyzed both in controlled and natural conditions. The multiple salt tolerance mechanisms found in this species are mainly the accumulation of the phytohormone abscisic acid, the increase of the antioxidant capacity and proline content, together with the development of a large leaf water-storage parenchyma that allows Na+ accumulation and an efficient osmotic adjustment. Lycium humile is probably one of the most salt-tolerant Solanaceae species in the world, and, in controlled conditions, can effectively grow at high NaCl concentrations (at least, up to 750 mM NaCl) but also, in the absence of salts in the medium. Therefore, we propose that natural distribution of L. humile is more related to water availability, as a limiting factor of growth in Altiplano-Puna saline habitats, than to high salt concentrations in the soils.


Assuntos
Lycium , Solanaceae , Argentina , Salinidade , Tolerância ao Sal , Plantas Tolerantes a Sal
5.
Foods ; 10(8)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34441551

RESUMO

The vegetable watercress (Nasturtium officinale R.Br.) is, besides being a generally nutritious food, a rich source of glucosinolates. Gluconasturtiin, the predominant glucosinolate in watercress, has been shown to have several health beneficial properties through its bioactive breakdown product phenethyl isothiocyanate. Little is known about the immunoregulatory effects of watercress. Moreover, anti-inflammatory effects have mostly been shown in in vitro or in animal models. Hence, we conducted a proof-of-concept study to investigate the effects of watercress on the human immune system. In a cross-over intervention study, 19 healthy subjects (26.5 ± 4.3 years; 14 males, 5 females) were given a single dose (85 g) of fresh self-grown watercress or a control meal. Two hours later, a 30 min high-intensity workout was conducted to promote exercise-induced inflammation. Blood samples were drawn before, 5 min after, and 3 h after the exercise unit. Inflammatory blood markers (IL-1ß, IL-6, IL-10, TNF-α, MCP-1, MMP-9) were analyzed in whole blood cultures after ex vivo immune cell stimulation via lipopolysaccharides. A mild pro-inflammatory reaction was observed after watercress consumption indicated by an increase in IL-1ß, IL-6, and TNF-α, whereas the immune response was more pronounced for both pro-inflammatory and anti-inflammatory markers (IL-1ß, IL-6, IL-10, TNF-α) after the exercise unit compared to the control meal. During the recovery phase, watercress consumption led to a stronger anti-inflammatory downregulation of the pro-inflammatory cytokines IL-6 and TNF-α. In conclusion, we propose that watercress causes a stronger pro-inflammatory response and anti-inflammatory counter-regulation during and after exercise. The clinical relevance of these changes should be verified in future studies.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa