Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Allergy Clin Immunol ; 154(1): 209-221.e6, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38513838

RESUMO

BACKGROUND: Millions of people are exposed to landscape fire smoke (LFS) globally, and inhalation of LFS particulate matter (PM) is associated with poor respiratory and cardiovascular outcomes. However, how LFS affects respiratory and cardiovascular function is less well understood. OBJECTIVE: We aimed to characterize the pathophysiologic effects of representative LFS airway exposure on respiratory and cardiac function and on asthma outcomes. METHODS: LFS was generated using a customized combustion chamber. In 8-week-old female BALB/c mice, low (25 µg/m3, 24-hour equivalent) or moderate (100 µg/m3, 24-hour equivalent) concentrations of LFS PM (10 µm and below [PM10]) were administered daily for 3 (short-term) and 14 (long-term) days in the presence and absence of experimental asthma. Lung inflammation, gene expression, structural changes, and lung function were assessed. In 8-week-old male C57BL/6 mice, low concentrations of LFS PM10 were administered for 3 days. Cardiac function and gene expression were assessed. RESULTS: Short- and long-term LFS PM10 airway exposure increased airway hyperresponsiveness and induced steroid insensitivity in experimental asthma, independent of significant changes in airway inflammation. Long-term LFS PM10 airway exposure also decreased gas diffusion. Short-term LFS PM10 airway exposure decreased cardiac function and expression of gene changes relating to oxidative stress and cardiovascular pathologies. CONCLUSIONS: We characterized significant detrimental effects of physiologically relevant concentrations and durations of LFS PM10 airway exposure on lung and heart function. Our study provides a platform for assessment of mechanisms that underpin LFS PM10 airway exposure on respiratory and cardiovascular disease outcomes.


Assuntos
Asma , Camundongos Endogâmicos BALB C , Material Particulado , Fumaça , Animais , Feminino , Fumaça/efeitos adversos , Asma/fisiopatologia , Asma/etiologia , Masculino , Camundongos , Material Particulado/efeitos adversos , Camundongos Endogâmicos C57BL , Pulmão/imunologia , Pulmão/fisiopatologia , Incêndios Florestais , Modelos Animais de Doenças
2.
Am J Physiol Lung Cell Mol Physiol ; 326(5): L618-L626, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38469627

RESUMO

Thymic stromal lymphopoietin (TSLP) is an epithelial-derived pleiotropic cytokine that regulates T-helper 2 (Th2) immune responses in the lung and plays a major role in severe uncontrolled asthma. Emerging evidence suggests a role for endoplasmic reticulum (ER) stress in the pathogenesis of asthma. In this study, we determined if ER stress and the unfolded protein response (UPR) signaling are involved in TSLP induction in the airway epithelium. For this, we treated human bronchial epithelial basal cells and differentiated primary bronchial epithelial cells with ER stress inducers and the TSLP mRNA and protein expression was determined. A series of siRNA gene knockdown experiments were conducted to determine the ER stress-induced TSLP signaling pathways. cDNA collected from asthmatic bronchial biopsies was used to determine the gene correlation between ER stress and TSLP. Our results show that ER stress signaling induces TSLP mRNA expression via the PERK-C/EBP homologous protein (CHOP) signaling pathway. AP-1 transcription factor is important in regulating this ER stress-induced TSLP mRNA induction, though ER stress alone cannot induce TSLP protein production. However, ER stress significantly enhances TLR3-induced TSLP protein secretion in the airway epithelium. TSLP and ER stress (PERK) mRNA expression positively correlates in bronchial biopsies from participants with asthma, particularly in neutrophilic asthma. In conclusion, these results suggest that ER stress primes TSLP that is then enhanced further upon TLR3 activation, which may induce severe asthma exacerbations. Targeting ER stress using pharmacological interventions may provide novel therapeutics for severe uncontrolled asthma.NEW & NOTEWORTHY TSLP is an epithelial-derived cytokine and a key regulator in the pathogenesis of severe uncontrolled asthma. We demonstrate a novel mechanism by which endoplasmic reticulum stress signaling upregulates airway epithelial TSLP mRNA expression via the PERK-CHOP signaling pathway and enhances TLR3-mediated TSLP protein secretion.


Assuntos
Asma , Citocinas , Estresse do Retículo Endoplasmático , Células Epiteliais , Linfopoietina do Estroma do Timo , Receptor 3 Toll-Like , Resposta a Proteínas não Dobradas , Humanos , Citocinas/metabolismo , Receptor 3 Toll-Like/metabolismo , Receptor 3 Toll-Like/genética , Asma/metabolismo , Asma/patologia , Asma/genética , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Fator de Transcrição CHOP/metabolismo , Fator de Transcrição CHOP/genética , Transdução de Sinais , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Brônquios/metabolismo , Brônquios/patologia , eIF-2 Quinase/metabolismo , eIF-2 Quinase/genética , Células Cultivadas , Feminino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
3.
J Neuroinflammation ; 21(1): 158, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879567

RESUMO

Respiratory infections are one of the most common causes of illness and morbidity in neonates worldwide. In the acute phase infections are known to cause wide-spread peripheral inflammation. However, the inflammatory consequences to the critical neural control centres for respiration have not been explored. Utilising a well characterised model of neonatal respiratory infection, we investigated acute responses within the medulla oblongata which contains key respiratory regions. Neonatal mice were intranasally inoculated within 24 h of birth, with either Chlamydia muridarum or sham-infected, and tissue collected on postnatal day 15, the peak of peripheral inflammation. A key finding of this study is that, while the periphery appeared to show no sex-specific effects of a neonatal respiratory infection, sex had a significant impact on the inflammatory response of the medulla oblongata. There was a distinct sex-specific response in the medulla coincident with peak of peripheral inflammation, with females demonstrating an upregulation of anti-inflammatory cytokines and males showing very few changes. Microglia also demonstrated sex-specificity with the morphology of females and males differing based upon the nuclei. Astrocytes showed limited changes during the acute response to neonatal infection. These data highlight the strong sex-specific impact of a respiratory infection can have on the medulla in the acute inflammatory phase.


Assuntos
Animais Recém-Nascidos , Infecções por Chlamydia , Chlamydia muridarum , Animais , Camundongos , Feminino , Infecções por Chlamydia/microbiologia , Infecções por Chlamydia/patologia , Masculino , Infecções Respiratórias/microbiologia , Infecções Respiratórias/patologia , Tronco Encefálico/patologia , Doenças Neuroinflamatórias/microbiologia , Doenças Neuroinflamatórias/patologia , Doenças Neuroinflamatórias/imunologia , Caracteres Sexuais , Camundongos Endogâmicos C57BL , Citocinas/metabolismo
5.
J Neuroimmunol ; 389: 578316, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38394966

RESUMO

Early life inflammation has been linked to long-term modulation of behavioural outcomes due to the central nervous system, but it is now becoming apparent it is also linked to dysfunction of visceral physiology. The medulla oblongata contains a number of nuclei critical for homeostasis, therefore we utilised the well-established model of neonatal lipopolysaccharide (LPS) exposure to examine the immediate and long-term impacts of systemic inflammation on the medulla oblongata. Wistar rats were injected with LPS or saline on postnatal days 3 and 5, with tissues collected on postnatal days 7 or 90 in order to assess expression of inflammatory mediators and microglial morphology in autonomic regions of the medulla oblongata. We observed a distinct sex-specific response of all measured inflammatory mediators at both ages, as well as significant neonatal sex differences in inflammatory mediators within saline groups. At both ages, microglial morphology had significant changes in branch length and soma size in a sex-specific manner in response to LPS exposure. This data not only highlights the strong sex-specific response of neonates to LPS administration, but also the significant life-long impact on the medulla oblongata and the potential altered control of visceral organs.


Assuntos
Lipopolissacarídeos , Bulbo , Ratos , Animais , Feminino , Masculino , Ratos Wistar , Lipopolissacarídeos/toxicidade , Lipopolissacarídeos/metabolismo , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Animais Recém-Nascidos
6.
EMBO Mol Med ; 16(2): 267-293, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38263527

RESUMO

The uterus is a unique mucosal site where immune responses are balanced to be permissive of a fetus, yet protective against infections. Regulation of natural killer (NK) cell responses in the uterus during infection is critical, yet no studies have identified uterine-specific factors that control NK cell responses in this immune-privileged site. We show that the constitutive expression of IFNε in the uterus plays a crucial role in promoting the accumulation, activation, and IFNγ production of NK cells in uterine tissue during Chlamydia infection. Uterine epithelial IFNε primes NK cell responses indirectly by increasing IL-15 production by local immune cells and directly by promoting the accumulation of a pre-pro-like NK cell progenitor population and activation of NK cells in the uterus. These findings demonstrate the unique features of this uterine-specific type I IFN and the mechanisms that underpin its major role in orchestrating innate immune cell protection against uterine infection.


Assuntos
Células Matadoras Naturais , Útero , Feminino , Humanos , Feto , Interferons
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa