Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Struct Biol ; 173(1): 86-98, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20554051

RESUMO

5'-Methylthioadenosine/S-adenosylhomocysteine (MTA/SAH) nucleosidase (MTAN) plays a key role in the methionine-recycling pathway of bacteria and plants. Despite extensive structural and biochemical studies, the molecular mechanism of substrate specificity for MTAN remains an outstanding question. Bacterial MTANs show comparable efficiency in hydrolyzing MTA and SAH, while the plant enzymes select preferentially for MTA, with either no or significantly reduced activity towards SAH. Bacterial and plant MTANs show significant conservation in the overall structure, and the adenine- and ribose-binding sites. The observation of a more constricted 5'-alkylthio binding site in Arabidopsis thalianaAtMTAN1 and AtMTAN2, two plant MTAN homologues, led to the hypothesis that steric hindrance may play a role in substrate selection in plant MTANs. We show using isothermal titration calorimetry that SAH binds to both Escherichia coli MTAN (EcMTAN) and AtMTAN1 with comparable micromolar affinity. To understand why AtMTAN1 can bind but not hydrolyze SAH, we determined the structure of the protein-SAH complex at 2.2Å resolution. The lack of catalytic activity appears to be related to the enzyme's inability to bind the substrate in a catalytically competent manner. The role of dynamics in substrate selection was also examined by probing the amide proton exchange rates of EcMTAN and AtMTAN1 via deuterium-hydrogen exchange coupled mass spectrometry. These results correlate with the B factors of available structures and the thermodynamic parameters associated with substrate binding, and suggest a higher level of conformational flexibility in the active site of EcMTAN. Our results implicate dynamics as an important factor in substrate selection in MTAN.


Assuntos
Proteínas de Arabidopsis/metabolismo , Desoxiadenosinas/metabolismo , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , N-Glicosil Hidrolases/metabolismo , Conformação Proteica , Purina-Núcleosídeo Fosforilase/metabolismo , S-Adenosil-Homocisteína/metabolismo , Tionucleosídeos/metabolismo , Proteínas de Arabidopsis/genética , Sítios de Ligação/genética , Calorimetria , Catálise , Cristalização , Proteínas de Escherichia coli/genética , Hidrólise , Estrutura Molecular , N-Glicosil Hidrolases/genética , Purina-Núcleosídeo Fosforilase/genética , Especificidade por Substrato , Termodinâmica
2.
J Mol Biol ; 352(3): 559-74, 2005 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-16109423

RESUMO

MTA/AdoHcy nucleosidase (MTAN) irreversibly hydrolyzes the N9-C1' bond in the nucleosides, 5'-methylthioadenosine (MTA) and S-adenosylhomocysteine (AdoHcy) to form adenine and the corresponding thioribose. MTAN plays a vital role in metabolic pathways involving methionine recycling, biological methylation, polyamine biosynthesis, and quorum sensing. Crystal structures of a wild-type (WT) MTAN complexed with glycerol, and mutant-enzyme and mutant-product complexes have been determined at 2.0A, 2.0A, and 2.1A resolution, respectively. The WT MTAN-glycerol structure provides a purine-free model and in combination with the previously solved thioribose-free MTAN-ADE structure, we now have separate apo structures for both MTAN binding subsites. The purine and thioribose-free states reveal an extensive enzyme-immobilized water network in their respective binding subsites. The Asp197Asn MTAN-MTA and Glu12Gln MTAN-MTR.ADE structures are the first enzyme-substrate and enzyme-product complexes reported for MTAN, respectively. These structures provide representative snapshots along the reaction coordinate and allow insight into the conformational changes of the enzyme and the nucleoside substrate. A "catalytic movie" detailing substrate binding, catalysis, and product release is presented.


Assuntos
N-Glicosil Hidrolases/química , Purina-Núcleosídeo Fosforilase/química , Substituição de Aminoácidos , Sítios de Ligação , Catálise , Cristalografia por Raios X , Escherichia coli/enzimologia , Escherichia coli/genética , Ligação de Hidrogênio , Modelos Moleculares , Mutagênese Sítio-Dirigida , N-Glicosil Hidrolases/genética , N-Glicosil Hidrolases/metabolismo , Conformação Proteica , Purina-Núcleosídeo Fosforilase/genética , Purina-Núcleosídeo Fosforilase/metabolismo , Eletricidade Estática
3.
Biochem J ; 384(Pt 2): 437-47, 2004 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-15320872

RESUMO

Delta crystallin, a taxon-specific crystallin present in avian eye lenses, is homologous to the urea cycle enzyme ASL (argininosuccinate lyase). Although there are two delta crystallin isoforms in duck lenses, ddeltac1 (duck delta1 crystallin) and ddeltac2 (duck delta2 crystallin), only ddeltac2 is catalytically active. Previous structural studies have suggested that residues Ser283 and His162 in the multi-subunit active site of ddeltac2/ASL are the putative catalytic acid/base, while the highly conserved, positively charged Lys289 is thought to help stabilize the carbanion intermediate. The strict conservation of a small hydroxy-containing residue (Thr or Ser) at position 161 adjacent to the putative catalytic base, as well as its proximity to the substrate in the S283A ddeltac2 enzyme-substrate complex, prompted us to investigate further the role this residue. Structures of the active T161S and inactive T161D ddeltac2 mutants, as well as T161D complexed with argininosuccinate, have been determined to 2.0 A resolution. The structures suggest that a hydroxy group is required at position 161 to help correctly position the side chain of Lys289 and the fumarate moiety of the substrate. Threonine is probably favoured over serine, because the interaction of its methyl group with Leu206 would restrict its conformational flexibility. Residues larger than Thr or Ser interfere with substrate binding, supporting previous suggestions that correct positioning of the substrate's fumarate moiety is essential for catalysis to occur. The presence of the 280s loop (i.e. a loop formed by residues 270-290) in the 'open' conformation suggests that loop closure, thought to be essential for sequestration of the substrate, may be triggered by the formation of the carbanion or aci-carboxylate intermediates, whose charge distribution more closely mimics that of the sulphate ion found in the active-site region of the inactive ddeltac1. The 280s loop in ddeltac1 is in the closed conformation.


Assuntos
Patos , delta-Cristalinas/química , Sequência de Aminoácidos/genética , Animais , Ácido Argininossuccínico/metabolismo , Proteínas Aviárias/química , Proteínas Aviárias/genética , Sítios de Ligação/genética , Cristalização/métodos , Cristalografia por Raios X/métodos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Mutagênese Sítio-Dirigida/genética , Mutação/genética , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , delta-Cristalinas/genética , delta-Cristalinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa