Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 37(6): e22958, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37171267

RESUMO

In Type 2 diabetes (T2D), elevated lipid levels have been suggested to contribute to insulin resistance and ß-cell dysfunction. We previously reported that the expression of the PGE2 receptor EP3 is elevated in islets of T2D individuals and is preferentially stimulated by palmitate, leading to ß-cell failure. The mouse EP3 receptor generates three isoforms by alternative splicing which differ in their C-terminal domain and are referred to as mEP3α, mEP3ß, and mEP3γ. We bring evidence that the expression of the mEP3γ isoform is elevated in islets of diabetic db/db mice and is selectively upregulated by palmitate. Specific knockdown of the mEP3γ isoform restores the expression of ß-cell-specific genes and rescues MIN6 cells from palmitate-induced dysfunction and apoptosis. This study indicates that palmitate stimulates the expression of the mEP3γ by a posttranscriptional mechanism, compared to the other spliced isoforms, and that the de novo synthesized ceramide plays an important role in FFA-induced mEP3γ expression in ß-cells. Moreover, induced levels of mEP3γ mRNA by palmitate or ceramide depend on p38 MAPK activation. Our findings suggest that mEP3γ gene expression is regulated at the posttranscriptional level and defines the EP3 signaling axis as an important pathway mediating ß-cell-impaired function and demise.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Camundongos , Animais , Receptores de Prostaglandina E/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Insulina/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Palmitatos/metabolismo , Ceramidas/metabolismo , Receptores de Prostaglandina E Subtipo EP3/genética , Receptores de Prostaglandina E Subtipo EP3/metabolismo
2.
FEBS J ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38857249

RESUMO

Almost all mitochondrial proteins are encoded by nuclear genes and synthesized in the cytosol as precursor proteins. Signals in the amino acid sequence of these precursors ensure their targeting and translocation into mitochondria. However, in many cases, only a certain fraction of a specific protein is transported into mitochondria, while the rest either remains in the cytosol or undergoes reverse translocation to the cytosol, and can populate other cellular compartments. This phenomenon is called dual localization which can be instigated by different mechanisms. These include alternative start or stop codons, differential transcripts, and ambiguous or competing targeting sequences. In many cases, dual localization might serve as an economic strategy to reduce the number of required genes; for example, when the same groups of enzymes are required both in mitochondria and chloroplasts or both in mitochondria and the nucleus/cytoplasm. Such cases frequently employ ambiguous targeting sequences to distribute proteins between both organelles. However, alternative localizations can also be used for signaling, for example when non-imported precursors serve as mitophagy signals or when they represent transcription factors in the nucleus to induce the mitochondrial unfolded stress response. This review provides an overview regarding the mechanisms and the physiological consequences of dual targeting.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa