Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Eur J Immunol ; : e2451094, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980255

RESUMO

The antiallergic effects of gut microbiota have been attracting attention in recent years, but the underlying cellular and molecular mechanisms have not yet been fully understood. In this study, we aimed to investigate these mechanisms specifically focusing on mast cells. Mast cells retain intracellular granules containing various inflammatory mediators such as histamine, which are released outside the cells upon IgE and allergen stimulation. We previously reported that increased expression of the transcription factor, CCAAT/enhancer-binding protein α (C/EBPα), suppresses granule formation in mast cells and that Lacticaseibacillus casei JCM1134T (LC) upregulates C/EBPα levels. Here, granule formation in mouse bone marrow-derived mast cells was suppressed in a MyD88-dependent manner after LC treatment due to C/EBPα-dependent downregulation of the genes encoding serglycin (SRGN) and mast cell protease 4 (Mcpt4). Furthermore, C/EBPα expression was regulated by DNA methylation in the 5' region far upstream of the transcription start site. LC suppressed DNA methylation of specific CpG motifs in the 5' region of the C/EBPα gene. These results conclude that specific gut microbial components, such as those from LC, suppress granule formation in mast cells by inhibiting SRGN and Mcpt4 expression via reduced C/EBPα gene methylation.

2.
Biosci Biotechnol Biochem ; 84(1): 171-177, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31476130

RESUMO

We tested the hypothesis that α-lactalbumin inhibits the disruption of intestinal barrier function and liver cirrhosis by restoring gut-liver axis function in thioacetamide (TAA) -treated rats. Rat diets were supplemented with α-lactalbumin replacing 50% of dietary protein. After consuming α-lactalbumin for one week, rats were intraperitoneally injected with TAA twice a week for 14 weeks. The α-lactalbumin-enriched diet significantly inhibited the elevation of plasma alanine aminotransferase, aspartate aminotransferase, and hyaluronic acids. The supplement significantly reduced plasma lipopolysaccharide levels and increased occludin mRNA level. Hepatic fibrosis and regenerative nodules was developed and intestinal villi were shortened by TAA; α-Lactalbumin attenuated these histopathological changes. These results indicated that α-lactalbumin improved intestinal barrier function, suppressing endotoxin levels. These data also suggested that α-lactalbumin ameliorated the impairment of the gut-liver axis by TAA, inhibiting the development of liver cirrhosis.


Assuntos
Suplementos Nutricionais , Trato Gastrointestinal/efeitos dos fármacos , Lactalbumina/uso terapêutico , Cirrose Hepática Experimental/induzido quimicamente , Cirrose Hepática Experimental/dietoterapia , Fígado/efeitos dos fármacos , Substâncias Protetoras/uso terapêutico , Tioacetamida/farmacologia , Alanina Transaminase/sangue , Animais , Aspartato Aminotransferases/sangue , Fibrose/tratamento farmacológico , Trato Gastrointestinal/metabolismo , Expressão Gênica/efeitos dos fármacos , Ácido Hialurônico/sangue , Injeções Intraperitoneais , Lipopolissacarídeos/sangue , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática Experimental/prevenção & controle , Masculino , RNA Mensageiro/genética , Ratos , Ratos Sprague-Dawley , Tioacetamida/administração & dosagem , Proteínas de Junções Íntimas/genética
3.
Inorg Chem ; 58(14): 8938-8942, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31251053

RESUMO

We present a combined experimental and theoretical investigation targeted at the thermochemical properties of a series of alkaline-earth metal carbodiimides. Their Gibbs energies and decomposition temperatures were calculated on the basis of phonons derived from density functional theory. The theoretical decomposition temperatures arrive at 1270, 1224, and 1185 K for CaNCN, α-SrNCN, and tetragonal BaNCN, respectively. Only the melt of tetragonal BaNCN is maintained at ∼1173 K, which is slightly below its calculated decomposition temperature. Experimentally, the melt of BaNCN did not decompose below 1273 K. On the contrary, both CaNCN and α-SrNCN partially decompose by forming a mixture of their carbides, metals, and nitrogen. The calculated Gibbs energies also show that the tetragonal phase of BaNCN is more stable than the rhombohedral one. We conclude that the melt of BaNCN is useful in the crystal growth of oxynitride perovskites such as BaTaO2N.

4.
Inorg Chem ; 58(24): 16752-16760, 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31774662

RESUMO

Perovskite-type oxynitride BaTaO2N has been attracting attention for its large dielectric constant, which is almost independent of the temperature by measurements on its ceramics. Its dielectric characteristics are attributed to polar nanoregions (PNRs) in the average cubic crystal structure. Polarization saturation to produce a butterfly-like piezoresponse force microscopy (PFM) signal was observed on BaTaO2N crystals in the present study. Reddish crystallites of BaTaO2N of up to 3.1 µm in size were grown using a BaCN2 flux. Grain growth proceeded through the formation of a Ruddlesden-Popper-type oxynitride from the reaction between BaTaO2N powder and molten BaCN2. Their electrical property was studied using PFM with special care because of the small size of the crystals. They were found to be much more highly insulating than its ceramics. Ferroelectricity with complete phase inversion was observed on an oxynitride perovskite crystal for the first time. A large coercivity of 50-60 V was observed in the measurement. Such ferroelectricity is ascribed to the PNRs induced by the polar linkages between cis-type TaO4N2 octahedra.

5.
J Biol Chem ; 292(37): 15426-15433, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28760826

RESUMO

The intestinal tract contains many commensal bacteria that modulate various physiological host functions. Dysbiosis of commensal bacteria triggers dysfunction of the intestinal epithelial barrier, leading to the induction or aggravation of intestinal inflammation. To elucidate whether microRNA plays a role in commensal microbiome-dependent intestinal epithelial barrier regulation, we compared transcripts in intestinal epithelial cells (IECs) from conventional and germ-free mice and found that commensal bacteria induced the expression of miR-21-5p in IECs. miR-21-5p increased intestinal epithelial permeability and up-regulated ADP ribosylation factor 4 (ARF4), a small GTPase, in the IEC line Caco-2. We also found that ARF4 expression was up-regulated upon suppression of phosphatase and tensin homolog (PTEN) and programmed cell death 4 (PDCD4), which are known miR-21-5p targets, by RNAi. Furthermore, ARF4 expression in epithelial cells of the large intestine was higher in conventional mice than in germ-free mice. ARF4 suppression in the IEC line increased the expression of tight junction proteins and decreased intestinal epithelial permeability. These results indicate that commensal microbiome-dependent miR-21-5p expression in IECs regulates intestinal epithelial permeability via ARF4, which may therefore represent a target for preventing or managing dysfunction of the intestinal epithelial barrier.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Microbioma Gastrointestinal/fisiologia , Mucosa Intestinal/microbiologia , MicroRNAs/metabolismo , Regulação para Cima , Fatores de Ribosilação do ADP/antagonistas & inibidores , Fatores de Ribosilação do ADP/genética , Animais , Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Células CACO-2 , Linhagem Celular Tumoral , Células Cultivadas , Feminino , Vida Livre de Germes , Células HT29 , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/enzimologia , Mucosa Intestinal/fisiologia , Intestino Grosso/citologia , Intestino Grosso/enzimologia , Intestino Grosso/microbiologia , Intestino Grosso/fisiologia , Camundongos Endogâmicos BALB C , PTEN Fosfo-Hidrolase/antagonistas & inibidores , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Permeabilidade , Proteômica/métodos , Interferência de RNA , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
6.
J Immunol ; 196(10): 4172-84, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-27053762

RESUMO

Inactivated influenza vaccines have two formulations, whole- and split-virion types; however, how differential formulations impact their booster effects remain unknown. In this study, we demonstrate that whole-virion vaccines recall two waves of Ab responses, early T cell-independent (TI) and late T cell-dependent responses, whereas split-virion vaccines elicit the late T cell-dependent response only. Notably, higher-affinity Abs with improved neutralizing activity are provided from the early TI response, which emphasizes the important contribution of the formulation-dependent response in the protective immunity. Moreover, we show that the early TI response completely requires B cell-intrinsic TLR7 signaling, which can be delivered through viral RNAs within whole-virion vaccine. Thus, our results indicate that TLR agonists in whole-virion type improve recall Ab responses by directly targeting memory B cells, a finding with important implications for vaccine strategies aimed at the prompt recall of high-affinity neutralizing Abs.


Assuntos
Linfócitos B/imunologia , Vacinas contra Influenza/imunologia , RNA Viral/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Vírion/imunologia , Animais , Anticorpos Antivirais/metabolismo , Afinidade de Anticorpos , Linfócitos B/transplante , Células Cultivadas , Humanos , Imunidade Humoral , Memória Imunológica , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/metabolismo , Vacinação
7.
Biosci Biotechnol Biochem ; 82(4): 584-599, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29448897

RESUMO

Recent studies have revealed that various food components affect the immune response. These components act on various immune cells, and their effects are mediated through the intestinal immune system and, in some cases, the intestinal microbiota. In this review, we describe the immunomodulating effects of various food components, including probiotics, prebiotics, polysaccharides, vitamins, minerals, fatty acids, peptides, amino acids and polyphenols. Some of these components enhance immune responses, leading to host defense against infection, whereas others inhibit immune responses, thus suppressing allergy and inflammation.


Assuntos
Alimentos , Imunomodulação , Intestinos/imunologia , Aminoácidos/administração & dosagem , Aminoácidos/farmacologia , Animais , Bactérias/metabolismo , Ácidos Graxos/administração & dosagem , Ácidos Graxos/farmacologia , Microbioma Gastrointestinal , Humanos , Hipersensibilidade/imunologia , Hipersensibilidade/prevenção & controle , Imunidade Celular , Inflamação/imunologia , Inflamação/prevenção & controle , Intestinos/microbiologia , Minerais/administração & dosagem , Minerais/farmacologia , Polissacarídeos/metabolismo , Prebióticos , Probióticos , Vitaminas/administração & dosagem , Vitaminas/farmacologia
8.
Int Arch Allergy Immunol ; 174(3-4): 121-132, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29145201

RESUMO

BACKGROUND: Fructo-oligosaccharides (FOS) are prebiotic agents with immunomodulatory effects involving improvement of the intestinal microbiota and metabolome. In this study, we investigated the cellular mechanisms through which FOS modulate intestinal antigen-specific CD4+ T cell responses in food allergy, using OVA23-3 mice. METHODS: OVA23-3 mice were fed an experimental diet containing either ovalbumin (OVA) or OVA and FOS for 1 week. Body weight and mucosal mast cell protease 1 in the serum were measured as the indicator of intestinal inflammation. Single-cell suspensions were prepared from intestinal and systemic lymphoid tissues for cellular analysis. Cytokine production was measured by ELISA. Activation markers and intracellular cytokines in CD4+ T cells were analyzed by flow cytometry. Activated CD4+ T cells were purified to examine cytokine production. RESULTS: Dietary intake of FOS provided moderate protection from the intestinal inflammation induced by the OVA-containing diet. FOS significantly reduced food allergy-induced Th2 cytokine responses in intestinal tissues but not in systemic tissues. FOS decreased OVA diet-induced IFN-γ+IL-4+ double-positive CD4+ T cells and early-activated CD45RBhighCD69+CD4+ T cells in the mesenteric lymph nodes. Furthermore, we confirmed that these CD45RBhighCD69+CD4+ T cells are able to produce high levels of IFN-γ and moderate level of IL-4, IL-10, and IL-13. CONCLUSIONS: Dietary intake of FOS during the development of food allergy attenuates the induction of intestinal Th2 cytokine responses by regulating early activation of naïve CD4+ T cells, which produce both Th1 and Th2 cytokines. Our results suggest FOS might be a potential food agent for the prevention of food allergy by modulating oral sensitization to food antigens.


Assuntos
Hipersensibilidade Alimentar/imunologia , Intestinos/imunologia , Tecido Linfoide/imunologia , Células Th1/imunologia , Células Th2/imunologia , Animais , Células Cultivadas , Citocinas/metabolismo , Dieta , Modelos Animais de Doenças , Feminino , Hipersensibilidade Alimentar/dietoterapia , Frutose/química , Frutose/uso terapêutico , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Oligossacarídeos/química , Oligossacarídeos/uso terapêutico , Ovalbumina
9.
Biosci Biotechnol Biochem ; 81(10): 1941-1947, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28752795

RESUMO

The present study was designed to evaluate the hepatoprotective potential of α-lactalbumin (αLA) against dimethylnitrosamine (DMN)-induced toxic insults in the rat liver. The liver damage was induced in rats by the repeated administration of DMN (10 mg/kg, i.p.) on three consecutive days per week for three weeks. The rats were maintained on either a standard AIN-93 M or αLA-enriched diet starting one week before the DMN injection until the termination of the experiment. The DMN treatment produced a progressive increase in the plasma markers (aspartate aminotransferase, alanine aminotransferase, total bililbin, hyarulonic acid, and matrix metalloproteinase-2) in 28 days after the first DMN injection. Dietary treatment with αLA significantly reduced the DMN-induced damage toward normalcy. NG-nitro-L-arginine methyl ester, a nitric oxide synthase inhibitor, significantly attenuated the hepatoprotective effect of αLA. These findings show that αLA has a marked suppressive effect on hepetic fibrosis through a nitric oxide-mediated mechanism.


Assuntos
Dimetilnitrosamina/farmacologia , Lactalbumina/química , Lactalbumina/farmacologia , Fígado/efeitos dos fármacos , Fígado/patologia , Leite/química , Óxido Nítrico/metabolismo , Alanina Transaminase/sangue , Animais , Aspartato Aminotransferases/sangue , Bovinos , Fibrose , Fígado/metabolismo , Masculino , Tamanho do Órgão/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Baço/efeitos dos fármacos , Baço/patologia
10.
Biosci Biotechnol Biochem ; 81(2): 242-248, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27760493

RESUMO

α-Defensin 5 is important to both maintenance of a gut microbiota and host immunity. While previous reports have shown that gut bacteria are able to upregulate α-defensin 5 through Toll-like receptor signaling, we demonstrate here that α-defensin 5 expression can also be regulated by microbial metabolites. Among these, lactate appeared to significantly suppress α-defensin 5 gene transcription. Actually, fractions of <3 kD compounds obtained from the ceca of SPF mice were suppressed α-defensin 5 gene transcription at specific concentrations. Our results also suggest that cecal content may include as yet unidentified factors that can enhance α-defensin 5 expression. Our data point to a novel function for the gut microbial metabolites in controlling the expression of antimicrobial peptides in the intestine.


Assuntos
Microbioma Gastrointestinal , Regulação da Expressão Gênica , Intestino Grosso/metabolismo , Intestino Grosso/microbiologia , Intestino Delgado/metabolismo , Intestino Delgado/microbiologia , alfa-Defensinas/genética , Animais , Células CACO-2 , Feminino , Humanos , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
11.
Biosci Biotechnol Biochem ; 78(4): 672-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25036966

RESUMO

Cyclooxygenase-2 is expressed early in colon carcinogenesis and plays crucial role in the progress of the disease. Recently, we found that α-lactalbumin had anti-inflammatory activity by inhibiting cyclooxygenase-2. In experiment 1, we investigated the effects of α-lactalbumin on the colon carcinogenesis initiated with azoxymethane (AOM) followed by promotion with dextran sodium sulfate (DSS) in mice. Dietary treatment with α-lactalbumin decreased fecal occult blood score at 3 days after DSS intake. α-Lactalbumin also decreased the colon tumor at week 9. In experiment 2, AOM-treated mice were sacrificed at 7 days after DSS intake. The plasma and colon prostaglandin E2 (PGE2) levels in AOM/DSS-treated mice were higher than those in the DSS-treated mice without initiation by AOM. α-Lactalbumin decreased PGE2 in both plasma and colon. These results suggest that α-lactalbumin effectively inhibited colon carcinogenesis, and the inhibition may be due to the decreased PGE2 by inhibiting cyclooxygenase-2 at cancer promotion stages.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Azoximetano/farmacologia , Carcinogênese/efeitos dos fármacos , Colo/efeitos dos fármacos , Sulfato de Dextrana/farmacologia , Lactalbumina/farmacologia , Leite/química , Adenocarcinoma/induzido quimicamente , Adenocarcinoma/patologia , Adenocarcinoma/prevenção & controle , Adenoma/induzido quimicamente , Adenoma/patologia , Adenoma/prevenção & controle , Animais , Anti-Inflamatórios não Esteroides/uso terapêutico , Carcinogênese/induzido quimicamente , Bovinos , Colo/metabolismo , Colo/patologia , Neoplasias do Colo/induzido quimicamente , Neoplasias do Colo/patologia , Neoplasias do Colo/prevenção & controle , Suplementos Nutricionais , Dinoprostona/sangue , Dinoprostona/metabolismo , Inflamação/sangue , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Interleucina-1beta/metabolismo , Lactalbumina/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sangue Oculto , Tamanho do Órgão/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
12.
Biosci Biotechnol Biochem ; 78(10): 1669-76, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25273132

RESUMO

The intestine harbors a substantial number of commensal bacteria that provide considerable benefits to the host. Epidemiologic studies have identified associations between alterations in the composition of the intestinal microbiota and the development of allergic disease. However, the cellular and molecular mechanisms underlying these effects remain to be determined. Here, we show that heat-killed commensal bacteria suppressed degranulation of mast cells in vitro in a MyD88-independent manner. In particular, Enterococcus faecalis showed the strongest suppression of degranulation through partial inhibition of Ca(2+) signaling upon the high affinity IgE receptor (FcεRI) cross-linking.


Assuntos
Degranulação Celular , Enterococcus faecalis/fisiologia , Mastócitos/citologia , Fator 88 de Diferenciação Mieloide/metabolismo , Animais , Feminino , Espaço Intracelular/metabolismo , Camundongos , Transdução de Sinais
13.
J Biol Chem ; 286(41): 35755-35762, 2011 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-21862578

RESUMO

Intestinal epithelial cells (IECs) are continuously exposed to large numbers of commensal bacteria but are relatively insensitive to them, thereby averting an excessive inflammatory reaction. We have previously reported that the hyporesponsiveness of a human IEC line to LPS was primarily the result of a down-regulation of TLR4 gene transcription through epigenetic mechanisms. In the present study we show that DNA methylation in the 5' region of the TLR4 gene is significantly higher in IECs than in splenic cells in vivo. The methylation was shown to be dependent on the differentiation state of the IECs, as the differentiated IEC population that expressed higher levels of intestinal alkaline phosphatase (IAP) also displayed greater methylation and lower expression of the TLR4 gene than the undifferentiated population. The IAP(high), differentiated population also showed less abundant expression of CDX2, the transcription factor required for the development of the intestine, than the IAP(low), undifferentiated population. Overexpression of CDX2 in an IEC line decreased the methylation level of the TLR4 gene, increased transcriptional promoter activity of the gene, and increased responsiveness to the TLR4 ligand. Furthermore, the methylation level of the TLR4 gene was significantly lower in IECs of the large intestine of germ-free mice than in those of conventional mice, whereas the level in IECs of the small intestine was almost equal between these mice, indicating that commensal bacteria contribute to the maintenance of intestinal symbiosis by controlling epigenetic modification of the host gene in the large intestine.


Assuntos
Bactérias/metabolismo , Epigênese Genética/fisiologia , Células Epiteliais/metabolismo , Vida Livre de Germes/fisiologia , Intestino Grosso/metabolismo , Intestino Grosso/microbiologia , Animais , Bactérias/crescimento & desenvolvimento , Fator de Transcrição CDX2 , Células CACO-2 , Metilação de DNA/fisiologia , Células Epiteliais/microbiologia , Proteínas de Homeodomínio/biossíntese , Proteínas de Homeodomínio/genética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Regiões Promotoras Genéticas/fisiologia , Receptor 4 Toll-Like/biossíntese , Receptor 4 Toll-Like/genética , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética , Transcrição Gênica/fisiologia
14.
Front Behav Neurosci ; 16: 983421, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36817409

RESUMO

The oxytocin receptor (OXTR) knockout mouse is a model of autism spectrum disorder, characterized by abnormalities in social and olfactory behaviors and learning. Previously, we demonstrated that OXTR plays a crucial role in regulating aversive olfactory behavior to butyric acid odor. In this study, we attempted to determine whether coffee aroma affects the abnormal olfactory behavior of OXTR-Venus knock-in heterozygous mice [heterozygous OXTR (±) mice] using a set of behavioral and molecular experiments. Four-week repeated exposures of heterozygous OXTR (±) mice to coffee odor, containing three kairomone alkylpyrazines, rescued the abnormal olfactory behaviors compared with non-exposed wild-type or heterozygous OXTR (±) mice. Increased Oxtr mRNA expression in the olfactory bulb and amygdala coincided with the rescue of abnormal olfactory behaviors. In addition, despite containing the kairomone compounds, both the wild-type and heterozygous OXTR (±) mice exhibited a preference for the coffee odor and exhibited no stress-like increase in the corticotropin-releasing hormone, instead of a kairomone-associated avoidance response. The repeated exposures to the coffee odor did not change oxytocin and estrogen synthetase/receptors as a regulator of the gonadotropic hormone. These data suggest that the rescue of abnormal olfactory behaviors in heterozygous OXTR (±) mice is due to the coffee odor exposure-induced OXTR expression.

15.
Front Mol Biosci ; 9: 1005136, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36339704

RESUMO

The intestine is inhabited by a large number of commensal bacteria that are immunologically non-self, potentially causing inflammation. However, in a healthy intestine, inflammation is strictly controlled at low levels to maintain homeostasis. We previously reported that the gut microbiota induce DNA methylation of the gene encoding Toll-like receptor (TLR) 4, a pattern recognition receptor that recognizes lipopolysaccharides of gram-negative bacteria, in colonic epithelial cells, suggesting its role in controlling intestinal inflammation. However, there remains a question of how gut microbiota cause methylation of only specific genes including TLR4, despite the fact that DNA methyltransferase (DNMT) is common to all genes targeted for methylation. Here, we identified RBM14 as an adaptor molecule that recruits DNMT to the TLR4 gene. RBM14 was shown to bind DNMT3 and be expressed at significantly higher levels in an intestinal epithelial cell (IEC) line with hypermethylated TLR4 gene than in an IEC line with hypomethylated TLR4 gene. In addition, RBM14 interacted with DNA regions of the TLR4 gene, and knockdown of RBM14 suppressed DNA methylation of the TLR4 gene in IECs. Furthermore, RBM14 expression was higher in colonic epithelial cells of conventional mice than in those of germ-free mice. Collectively, these results indicate that the gut microbiota induce methylation of the TLR4 gene in colonic epithelial cells by upregulating RBM14, which can recruit DNMT3 to the gene. The regulation of adaptor molecules such as RBM14, which bind to specific target genes and recruit DNMT, can explain, at least in part, how gut microbiota contribute to the maintenance of intestinal homeostasis through epigenetic control of specific gene expression in IECs.

16.
J Immunol Res ; 2022: 3974141, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35571567

RESUMO

Gut-associated lymphoid tissue (GALT), such as Peyer's patches (PPs), are key inductive sites that generate IgA+ B cells, mainly through germinal center (GC) responses. The generation of IgA+ B cells is promoted by the presence of gut microbiota and dietary antigens. However, the function of GALT in the large intestine, such as cecal patches (CePs) and colonic patches (CoPs), and their regulatory mechanisms remain largely unknown. In this study, we demonstrate that the CePs possess more IgG2b+ B cells and have fewer IgA+ B cells than those in PPs from BALB/c mice with normal gut microbiota. Gene expression analysis of postswitched transcripts supported the differential expression of dominant antibody isotypes in B cells in GALT. Germ-free (GF) mice showed diminished GC B cells and had few IgA+ or IgG2b+ switched B cells in both the small and large intestinal GALT. In contrast, myeloid differentiation factor 88- (MyD88-) deficient mice exhibited decreased GC B cells and presented with reduced numbers of IgG2b+ B cells in CePs but not in PPs. Using ex vivo cell culture, we showed that CePs have a greater capacity to produce total and microbiota-reactive IgG2b, in addition to microbiota-reactive IgA, than the PPs. In line with the frequency of GC B cells and IgG2b+ B cells in CePs, there was a decrease in the levels of microbiota-reactive IgG2b and IgA in the serum of GF and MyD88-deficient mice. These data suggest that CePs have a different antibody production profile compared to PPs. Furthermore, the innate immune signals derived from gut microbiota are crucial for generating the IgG2b antibodies in CePs.


Assuntos
Microbioma Gastrointestinal , Nódulos Linfáticos Agregados , Animais , Imunoglobulina A/metabolismo , Imunoglobulina G/metabolismo , Camundongos , Fator 88 de Diferenciação Mieloide/metabolismo , Nódulos Linfáticos Agregados/metabolismo
17.
Biochem Biophys Res Commun ; 412(4): 704-9, 2011 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-21867680

RESUMO

Intestinal epithelial cells (IECs) must be tolerant of the large number of commensal bacteria inhabiting the intestinal tract to avoid excessive inflammatory reactions. Toll-interacting protein (Tollip), a negative regulator of Toll-like receptor signaling, is known to be expressed at high levels in IECs, and to thereby contribute to the hyporesponsiveness of IECs to commensals. In this study, we analyzed the underlying mechanisms for elevated transcription of the Tollip gene in IECs using a human IEC line, Caco-2, and a human monocyte line, THP-1, as a control. Elf-1 was identified as a transcription factor that negatively regulates Tollip gene expression. The transcription factor Elf-1 was localized in the nucleus by O-linked N-acetylglucosamine (O-GlcNAc) modification, whereas the unmodified form was detected only in the cytoplasm. Comparison of Caco-2 and THP-1 cells revealed that O-GlcNAc modification of Elf-1 was significantly lower in IECs than in monocytes. Collectively, the results indicate that insufficient O-GlcNAc modification prevents Elf-1-mediated transcriptional repression and thereby upregulates Tollip gene expression in IECs.


Assuntos
Acetilglucosamina/metabolismo , Núcleo Celular/metabolismo , Efrina-A2/metabolismo , Regulação da Expressão Gênica , Mucosa Intestinal/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Transcrição Gênica , Transporte Ativo do Núcleo Celular , Acilação , Animais , Células CACO-2 , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Elementos de Resposta
18.
J Immunol ; 183(10): 6522-9, 2009 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-19846881

RESUMO

Intestinal epithelial cells (IECs) are continuously exposed to large numbers of commensal bacteria but are relatively insensitive to them, thereby averting an excessive inflammatory reaction. In this study, we show that the low responsiveness of human IEC lines to LPS was mainly brought about by a down-regulation of TLR4 gene transcription. Additionally, the presence of an IEC-specific repressor element in the 5' region of the TLR4 gene and binding of a NF to the element was shown. The transcription factor ZNF160, which was expressed more abundantly in a LPS-low responder IEC line than in a LPS-high responder IEC line, repressed TLR4 gene transcription. ZNF160 is known to interact with the scaffold protein KAP1 via its N terminus to recruit histone deacetylase. Histone deacetylation, as well as DNA methylation, at the 5' region of the TLR4 gene was significantly higher in LPS-low responder IEC lines than in a monocyte line or a LPS-high responder IEC line. It was demonstrated that TLR4 gene transcription was repressed by these epigenetic regulations, which were, at least in part, dependent on ZNF160. Down-regulaton of TLR4 gene expression by these mechanisms in IECs possibly contributes to the maintainance of homeostasis in the intestinal commensal system.


Assuntos
Epigênese Genética , Mucosa Intestinal/imunologia , Proteínas Repressoras/metabolismo , Receptor 4 Toll-Like/genética , Linhagem Celular Tumoral , Metilação de DNA/genética , Metilação de DNA/imunologia , Regulação para Baixo/genética , Regulação para Baixo/imunologia , Genes Reporter/genética , Genes Reporter/imunologia , Histona Desacetilases/genética , Histona Desacetilases/imunologia , Homeostase/genética , Homeostase/imunologia , Humanos , Interleucina-8/biossíntese , Interleucina-8/imunologia , Lipopolissacarídeos/farmacologia , NF-kappa B/imunologia , NF-kappa B/metabolismo , Regiões Promotoras Genéticas/genética , Regiões Promotoras Genéticas/imunologia , Proteínas Repressoras/genética , Receptor 4 Toll-Like/antagonistas & inibidores
19.
Immunobiology ; 226(2): 152056, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33535092

RESUMO

Mast cells, which express the high-affinity IgE receptor (FcεRI) on their surface, play a crucial role in inducing allergic inflammation. Since mast cells are activated by crosslinking of FcεRI with IgE and allergens, the cell surface expression level of FcεRI is an important factor in determining the sensitivity to allergens. Recently, the involvement of gut microbiota in the prevalence and regulation of allergy has attracted attention but the precise underlying mechanisms are not fully understood. In this study, the effect of intestinal bacteria on cell surface expression of FcεRI was examined. Bacteroides acidifaciens type A 43 specifically suppressed cell surface expression of FcεRI on mouse bone marrow-derived mast cells (BMMCs) without reduction in FcεRI α and ß-chain mRNA and total protein expression. The suppressive effect required sustained exposure to this bacterium, with a corresponding reduction in Erk activation. Inhibition of Erk decreased cell surface distribution of FcεRI in BMMCs, at least in part, through facilitated endocytosis of FcεRI. These results indicate that B. acidifaciens type A 43 suppresses cell surface expression of FcεRI on mast cells in a post-translational manner via inhibition of Erk. The suppression of FcεRI expression on mast cells by specific bacteria might be the underlying mechanism involved in the regulation of allergy by gut microbiota.


Assuntos
Bacteroides , Mastócitos/imunologia , Receptores de IgE/imunologia , Animais , Células Cultivadas , Feminino , Microbioma Gastrointestinal , Intestinos/microbiologia , Camundongos Endogâmicos C57BL , Processamento de Proteína Pós-Traducional , Receptores de IgE/genética
20.
Immunohorizons ; 4(4): 178-190, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32295802

RESUMO

A huge number of commensal bacteria inhabit the intestine, which is equipped with the largest immune system in the body. Recently, the regulation of various physiological functions of the host by these bacteria has attracted attention. In this study, the effects of commensal bacteria on gene expression in colonic epithelial cells (CoECs) were investigated with focus on regulation of DNA methylation. RNA sequencing analyses of CoECs from conventional, germ-free, and MyD88-/- mice indicated that, out of the genes affected by commensal bacteria, those downregulated in a MyD88-independent manner were most frequently observed. Furthermore, when the 5' regions of genes downregulated by commensal bacteria in CoECs were captured using a customized array and immunoprecipitated with the anti-methyl cytosine Ab, a certain population of these genes was found to be highly methylated. Comprehensive analysis of DNA methylation in the 5' regions of genes in CoECs from conventional and germ-free mice upon pull-down assay with methyl-CpG-binding domain protein 2 directly demonstrated that DNA methylation in these regions was influenced by commensal bacteria. Actually, commensal bacteria were shown to control expression of Aldh1a1, which encodes a retinoic acid-producing enzyme and plays an important role in the maintenance of intestinal homeostasis via DNA methylation in the overlapping 5' region of Tmem267 and 3110070M22Rik genes in CoECs. Collectively, it can be concluded that regulation of DNA methylation in the 5' regions of a specific population of genes in CoECs acts as a mechanism by which commensal bacteria have physiological effects on the host.


Assuntos
Colo/metabolismo , Metilação de DNA/genética , Regulação para Baixo/genética , Células Epiteliais/metabolismo , Microbioma Gastrointestinal/genética , Interações entre Hospedeiro e Microrganismos/genética , Mucosa Intestinal/metabolismo , Intestino Delgado/metabolismo , Animais , Bactérias/metabolismo , Células Cultivadas , Colo/microbiologia , Feminino , Vida Livre de Germes , Mucosa Intestinal/microbiologia , Intestino Delgado/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa