Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Phys Chem Chem Phys ; 25(5): 4047-4061, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36651014

RESUMO

Inspired by the recently synthesized hexagonal boron nitride (h-BN) doped graphene, density functional theory (DFT) calculations were performed to evaluate the anodic properties of BN doped graphene (BN-G), graphene oxide (BN-GO) and reduced graphene oxide (BN-rGO) for Li/Na ion batteries (LIBs/NIBs). Our proposed materials show a semiconducting character with band gaps of 1.4, 0.67 and 0.45 eV for BN-G, BN-GO and BN-rGO, respectively. Among the three nanosheets, BN-rGO shows strong interaction behavior with Li/Na whereby the defected site exhibits high reactivity compared to the other adsorption sites. The adsorption energies are found to be about -4.72/-4.10 eV for Li/Na at the defected site, which are consecutively 3 and 2 times stronger than the adsorption energies of BN-G and BN-GO. It is predicted by partial density of states (PDOS) and band structure analysis that the nanosheets will exhibit metallic behavior through the adsorption process. Relatively low diffusion barriers are found to be about 0.47 and 0.22 eV when Li and Na moved from one adsorption site to another nearby adsorption site on BN-rGO. Among them, BN-rGO shows a high specific capacity, about 1583 and 1319 mA h g-1 for LIBs and NIBs. Therefore, the suitable adsorption energy with metallic behavior of the nanosheet combined with the high specific capacity confirm that BN-rGO is a promising anode candidate for Li/Na ion batteries.

2.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36769059

RESUMO

Addiction, the continuous misuse of addictive material, causes long-term dysfunction in the neurological system. It substantially affects the control strength of reward, memory, and motivation. Addictive substances (alcohol, marijuana, caffeine, heroin, methamphetamine (METH), and nicotine) are highly active central nervous stimulants. Addiction leads to severe health issues, including cardiovascular diseases, serious infections, and pulmonary/dental diseases. Drug dependence may result in unfavorable cognitive impairments that can continue during abstinence and negatively influence recovery performance. Although addiction is a critical global health challenge with numerous consequences and complications, currently, there are no efficient options for treating drug addiction, particularly METH. Currently, novel treatment approaches such as psychological contingency management, cognitive behavioral therapy, and motivational enhancement strategies are of great interest. Herein, we evaluate the devastating impacts of different addictive substances/drugs on users' mental health and the role of tryptophan in alleviating unfavorable side effects. The tryptophan metabolites in the mammalian brain and their potential to treat compulsive abuse of addictive substances are investigated by assessing the functional effects of addictive substances on tryptophan. Future perspectives on developing promising modalities to treat addiction and the role of tryptophan and its metabolites to alleviate drug dependency are discussed.


Assuntos
Comportamento Aditivo , Estimulantes do Sistema Nervoso Central , Metanfetamina , Transtornos Relacionados ao Uso de Substâncias , Animais , Humanos , Triptofano/farmacologia , Transtornos Relacionados ao Uso de Substâncias/tratamento farmacológico , Encéfalo , Estimulantes do Sistema Nervoso Central/farmacologia , Metanfetamina/farmacologia , Mamíferos
3.
Inorg Chem ; 61(24): 9104-9118, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35658429

RESUMO

The design of molecular water oxidation catalysts (WOCs) requires a rational approach that considers the intermediate steps of the catalytic cycle, including water binding, deprotonation, storage of oxidizing equivalents, O-O bond formation, and O2 release. We investigated several of these properties for a series of base metal complexes (M = Mn, Fe, Co, Ni) bearing two variants of a pentapyridyl ligand framework, of which some were reported previously to be active WOCs. We found that only [Fe(Py5OMe)Cl]+ (Py5OMe = pyridine-2,6-diylbis[di-(pyridin-2-yl)methoxymethane]) showed an appreciable catalytic activity with a turnover number (TON) = 130 in light-driven experiments using the [Ru(bpy)3]2+/S2O82- system at pH 8.0, but that activity is demonstrated to arise from the rapid degradation in the buffered solution leading to the formation of catalytically active amorphous iron oxide/hydroxide (FeOOH), which subsequently lost the catalytic activity by forming more extensive and structured FeOOH species. The detailed analysis of the redox and water-binding properties employing electrochemistry, X-ray absorption spectroscopy (XAS), UV-vis spectroscopy, and density-functional theory (DFT) showed that all complexes were able to undergo the MIII/MII oxidation, but none was able to yield a detectable amount of a MIV state in our potential window (up to +2 V vs SHE). This inability was traced to (i) the preference for binding Cl- or acetonitrile instead of water-derived species in the apical position, which excludes redox leveling via proton coupled electron transfer, and (ii) the lack of sigma donor ligands that would stabilize oxidation states beyond MIII. On that basis, design features for next-generation molecular WOCs are suggested.

4.
Environ Geochem Health ; 43(10): 4235-4249, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33830391

RESUMO

Vertical heavy metal profiling reflects the history of the deposition of metals and helps to understand the characteristics of accumulation in various layers of the sediment. Nevertheless, no previous studies in Bangladesh had focused on the vertical distribution of heavy metals in core sediments. In this study, vertical distribution, contamination level and potential ecological risks of six heavy metals (Zn, Cu, Pb, Cr, Ni, Mn) from the core sediment of ship breaking were assessed and compared with the non-ship breaking area of Bangladesh. The concentration (µg/g) of heavy metals in the 0-10 cm (surface), 10-20 cm (middle) and 20-30 cm (bottom) of sediment cores was as follows, respectively: Zn (35.54-100.68, 37.27-258.02, 42.78-66.45); Cu (16.38-75.25, 30.64-92.02, 34.99-52.98); Pb (4.84-132.08, BDL-204.48, BDL-23.51); Cr (14.57-42.13, 25.31-42.71, 15.26-36.34); Ni (4.02-42.23, 4.94-43.70, 4.40-43.13); Mn (198.74-764.16, 257.77-980.50, 255.62-856.44). The heavy metal content of core sediment from the shipbreaking region was substantially higher than that of non-shipbreaking area. Except for Ni, heavy metal content was highest in the middle layer, followed by the upper and lower layers of the sediment core. Contamination exponents such as enrichment factor, contamination factor and geo-accumulation index (Igeo) revealed contamination by Zn, Cu and Pb while potential ecological risk factor ([Formula: see text]) and risk index suggested low ecological risk by studied heavy metals except for Pb. Correlation matrix, cluster analysis and principal component analysis indicated that all studied heavy metals could have similar anthropogenic origins.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Bangladesh , China , Monitoramento Ambiental , Sedimentos Geológicos , Metais Pesados/análise , Medição de Risco , Navios , Poluentes Químicos da Água/análise
5.
Molecules ; 25(14)2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-32659971

RESUMO

A rhamnose targeting strategy for generating effective anticancer vaccines was successful in our previous studies. We showed that by utilizing natural anti-rhamnose antibodies, a rhamnose-containing vaccine can be targeted to antigen-presenting cells, such as dendritic cells. In this case, rhamnose (Rha) was linked directly to the liposomes bearing the antigen. However, in the current approach, we conjugated a multivalent Tri-Rha ligand with the antigen itself, making it a single component vaccine construct, unlike the previous two-component vaccine construct where Rha cholesterol and Mucin1 (MUC1) antigen were both linked separately to the liposomes. Synthesis required the development of a linker for coupling of the Rha-Ser residues. We compared those two systems in a mouse model and found increased production of anti-MUC1 antibodies and more primed antigen-specific CD4+ T cells in both of the targeted approaches when compared to the control group, suggesting that this one-component vaccine construct could be a potential design used in our MUC1 targeting mechanisms.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Vacinas Anticâncer , Células Dendríticas/imunologia , Mucina-1 , Ramnose , Animais , Vacinas Anticâncer/química , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/farmacologia , Feminino , Lipossomos , Camundongos , Mucina-1/química , Mucina-1/imunologia , Mucina-1/farmacologia , Ramnose/química , Ramnose/imunologia , Ramnose/farmacologia
6.
Breed Sci ; 66(4): 613-626, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27795687

RESUMO

Sheath blight is considered the most significant disease of rice and causes enormous yield losses over the world. Breeding for resistant varieties is the only viable option to combat the disease efficiently. Seventeen diverged rice genotypes along with 17 QTL-linked SSR markers were evaluated under greenhouse conditions. Pearson's correlation showed only the flag leaf angle had a significant correlation with sheath blight resistance under greenhouse screening. Multivariate analysis based on UPGMA clustering and principal component analysis (PCA) indicated that the flag leaf angle, flag leaf length, and plant compactness were significantly associated with the following SSR marker alleles: RM209 (116,130), RM202 (176), RM224 (126), RM257 (156), RM426 (175), and RM6971 (196), which are linked to the SB QTLs: QRlh11, qSBR11-3, qSBR11-1, qSBR9-1, qShB3-2, and qSB-9. A Mantel test suggested a weak relationship between the observed phenotypes and allelic variation patterns, implying the independent nature of morphological and molecular variations. Teqing and Tetep were found to be the most resistant cultivars. IR65482-4-136-2-2, MR219-4, and MR264 showed improved resistance potentials. These results suggest that the morphological traits and QTLs which have been found to associate with sheath blight resistance are a good choice to enhance resistance through pyramiding either 2 QTLs or QTLs and traits in susceptible rice cultivars.

7.
Mar Pollut Bull ; 204: 116544, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38824706

RESUMO

Plastic particles have emerged as a growing threat to both ecosystems and human well-being, as they are being ingested and accumulate at different trophic levels. However, microplastic and mesoplastic contamination and its risk to coastal and marine water fish have not been well studied, particularly in the northern Bay of Bengal. In this study, the presence of small-scale plastic particles (micro- and meso-sized) in the gastrointestinal tract (GIT) and muscles of six edible fish species from the northern Bay of Bengal Coast were identified and analyzed. The overall range of microplastics was 1.74 ± 0.23-3.79 ± 2.03items/g in muscle and 0.54 ± 0.22-5.96 ± 3.16 items/g in the GIT, with 16.38 ± 8.08-31.88 ± 12.09 items/individual. No mesoplastics were found in muscle tissue, but they were present in the GIT at concentrations ranging from 0.33 ± 0.27 to 0.03 ± 0.02 items/g and from 0.51 ± 0.05to 1.38 ± 1.01 items/individual. Lepturacanthus savala accumulated the most microplastics in muscle, and Harpadon nehereus had the least. In addition, the highest levels of mesoplastics were detected in the GIT of Polynemus paradiseus and the lowest was detected in the GIT of Lutjenus sanguineus. Omnivorous fish showed higher plastic concentrations than carnivorous fish, which was linked to dietary habits, feeding strategies and digestive processes. Plastic material predominantly accumulated in the GIT rather than in the muscle. The majority of ingested plastic particles were fibres (95.18 %), were violet in color (34 %), and were < 0.5 mm in size (87 %). The dominant microplastic polymers included 38 % PE, 15 % PP, 33 % PU, and 14 % CES. In contrast, the prevalent mesoplastic polymers comprised 45 % PE, 19 % PP, 13 % PS, 16 % PA, and 7 % PET. Subsequently, a hazard analysis using the polymer hazard index (PHI) revealed that plastic contamination was of distinct hazard categories for different polymer types, ranging from grade I (<1) to grade IV (100-1000). The assessment of the contamination factor (1 < CF < 3) and pollution load index (PLI > 1) indicated moderate contamination of fish by the ingestion of plastic debris. This study provides the foremost evidence for the presence of mesoplastics and microplastics in coastal and marine fish in the study region, paving the way for future investigations and policy implementation.


Assuntos
Baías , Monitoramento Ambiental , Peixes , Microplásticos , Plásticos , Poluentes Químicos da Água , Animais , Microplásticos/análise , Poluentes Químicos da Água/análise , Medição de Risco , Baías/química , Plásticos/análise , Índia , Ecossistema
8.
Heliyon ; 10(10): e30802, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38778931

RESUMO

ZnO-Cu2O composites were made as photocatalysts in a range of different amounts using an easy, cheap, and environment-friendly coprecipitation method due to their superior visible light activity to remove pollutants from the surrounding atmosphere. X-ray diffraction and Fourier transform infrared spectroscopy (FT-IR) have demonstrated that ZnO-Cu2O catalysts are made of highly pure hexagonal ZnO and cubic Cu2O. X-ray photoelectron spectroscopy has confirmed that there is a substantial interaction between the two phases of the resultant catalyst. The optical characterizations of the synthesized ZnO-Cu2O composite were done via UV-vis reflectance spectroscopy. Due to the doping on ZnO, the absorption range of the ZnO-Cu2O catalyst is shifted from the ultraviolet to the visible region due to diffuse reflection. The degradation efficiency is affected by the Ratio of ZnO: Cu2O and ZnO-Cu2O composite with a proportion of 90:10 exhibited the most prominent photocatalytic activity on Acid Red 114, with a pseudo-first-order rate constant of 0.05032 min-1 that was 6 and 11 times greater than those of ZnO and Cu2O, respectively. The maximum degradation efficiency is 97 %. The enhanced photocatalytic activity of the composite is caused by the synergistic interaction of ZnO and Cu2O, which improves visible light absorption by lowering band gap energy and decreasing the rate at which the electron-hole pairs recombine. The scavenging experiment confirmed that hydroxyl radical was the dominant species for the photodegradation of Acid Red 114. Notably, the recycling test demonstrated the ZnO-Cu2O photocatalyst was highly stable and recyclable. These results suggest that the ZnO-Cu2O mix might be able to clean up environmental pollutants when it meets visible light.

9.
Mar Pollut Bull ; 203: 116429, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705003

RESUMO

This study aims to assess seasonal and spatial variations, contamination status, ecological risks, and metal sources (Ni, Pb, Cr, Cu, Mn, and Zn) in human-afforested mangrove sediments in a deltaic region. Five sampling locations were sampled during dry and wet seasons. Heavy metal concentrations followed the order: Mn > Zn > Ni > Cr > Cu > Pb. Metal loads, except Cu and Pb, were higher during the dry season, aligning with national and international recommendations. Sediment quality guidelines, contamination factor, geoaccumulation index, enrichment factors, and pollution load index indicated uncontaminated sediment in both seasons. Potential ecological risk assessment showed low risk conditions in all sites. However, modified hazard quotient indicated moderate pollution risk from all metals except Pb. Analysis suggests anthropogenic sources, particularly evident near shipbreaking yards in Sitakunda. While initially uncontaminated, ongoing metal influx poses a potential risk to mangrove ecosystems.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos , Metais Pesados , Poluentes Químicos da Água , Áreas Alagadas , Metais Pesados/análise , Sedimentos Geológicos/química , Medição de Risco , Poluentes Químicos da Água/análise , Estações do Ano
10.
Chemosphere ; 359: 142245, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38735498

RESUMO

This study aimed to evaluate the concentration, distribution, along with the environmental and human health impact of eight heavy metals-Pb, Cr, Cu, Cd, Zn, Mn, Ni, and As-on St. Martin's Island in the northeastern Bay of Bengal, and in doing so to help implement new legislations to protect the island. Focusing on the island's significance as a tourist destination, with seafood being a prominent dietary component, three sample types (sediment, seawater, and crustaceans) were selected for a comprehensive assessment, considering seasonal variations. Concentration of metals was observed to be lower than the established standards in sediment samples, but in seawater samples, Pb, Cr, Cd and Zn were higher than US-EPA values for natural marine water. The metals displayed a decreasing trend of Zn > Ni > Pb > Cu > Mn > As > Cd > Cr in crustacean samples for both seasons. Crustacean samples displayed higher metal concentrations in winter than in monsoon. Pb exceeded the maximum allowable limit for crustaceans with a concentration of about 3 and 4 mg kg-1 in monsoon and winter respectively; being more than 6-8 times the standard for Bangladesh which is only about 0.5 mg kg-1. Health indices displayed that although adults may suffer less from carcinogenic/non-carcinogenic health effects, the risks are far greater for children. For both age groups, As and Ni displayed possibilities of developing cancer. Principal Component Analysis (PCA)shed light on the sources of metals and showed that most of them were from anthropogenic sources. Overall, this study found that the quality of the environment of the island was better in comparison to previous studies made before the pandemic, and so, if the trend continues, it may lead to a better environment for the organisms around the island and help to keep the negative physiological impacts from the consumption of these organisms to a minimal.


Assuntos
Baías , Monitoramento Ambiental , Ilhas , Metais Pesados , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Metais Pesados/análise , Animais , Humanos , Baías/química , Água do Mar/química , Sedimentos Geológicos/química , Antozoários/química , Índia , Estações do Ano , Metais/análise , Alimentos Marinhos/análise , Crustáceos
11.
Heliyon ; 10(2): e24445, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38288022

RESUMO

Malnutrition has emerged as a noticeable obstruction to the socio-economic advancement of rural areas along the coastal regions of Bangladesh. Small indigenous fish species (SIS) have the potential to alleviate the malnutrition issue because of having higher nutritional compositions. However, prior research has overlooked the detailed nutritional value of SIS originating from coastal regions. Consequently, the current investigation sought to analyze the mineral and fatty acid composition of twelve SIS obtained from coastal homestead ponds. The findings indicated that the mineral composition in SIS exhibited the following descending order: calcium (Ca) > phosphorus (P) > potassium (K) > magnesium (Mg) > iron (Fe) > zinc (Zn). Furthermore, when considering the overall mineral content in SIS, it ranked in the following decreasing order: A. testudineus, M. tengara, C. punctatus, N. nandus, P. sophore, C. fasciatus, A. mola, C. batrachus, H. fossilis, P. sarana, M. aculeatus, and O. pabda. The analysis of the fatty acid profile further revealed that SIS is a rich source of palmitic acid, linoleic acid, oleic acid, stearic acid, myristic acid, palmitoleic acid, and linolenic acid. The saturated fatty acid content of the SIS varied between 42.66 % and 63.37 %, and the highest content was found in A. mola whereas the lowest was in A. testudineus. On the other hand, the total monounsaturated fatty acid content of the SIS ranged from 26.49 % (A. mola) to 46.12 % (P. sarana), and the total PUFAs contents among the fish species ranged from 5.7 % (A. mola) to 16.54 % (H. fossilis). Therefore, SIS could be a key source of minerals and essential fatty acids for human well-being. This can help fulfill nutrient requirements and reduce malnutrition among coastal populations. It can be said that, if these fishes are introduced in the culture systems, it will be used for consumption as well as support the livelihood of coastal people.

12.
Mar Pollut Bull ; 203: 116483, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38776643

RESUMO

Thorough deliberation is necessary to safeguard the tropical urban streams near the shoreline from human interference, as it is becoming a notable environmental danger. Consequently, an in-depth study was carried out on a significant urban waterway located on the southern seashore of Bangladesh, which is positioned in the Bengal delta, renowned as the largest delta in the globe. The current investigation assesses the potential health hazards associated with trace metals (Hg, Cu, As, Pb, Ni, Zn, Cd, Cr, Fe, and Mn) and uses chemometric analysis to determine where they originate. Likewise geochemical methods are used to analyze the levels of trace metal enrichment and pollution in the sediments of the river. Almost all of the elements' mean concentrations were observed to be within the standard limits. The findings not only demonstrate the extent of trace metal contamination but also the health threats that it poses to the public (male, female, and children) by polluting the sediment. For all age groups of people, the hazard index was <1, suggesting there was no non-carcinogenic threat. Regardless of age and sex, exposure occurred in descending order: ingestion > dermal > inhalation. Total carcinogenic risk (TCR) values for males, females, and children were 1.45E-05, 1.56E-05, and 1.34E-04, respectively, recommending that children are at greater vulnerability than adults. The geochemical approach and chemometric analysis corroborate the human-induced impact of trace metal loading in the sediment of the waterway, which is predominantly caused by the oil industry, domestic garbage, and untreated waste discharge.


Assuntos
Monitoramento Ambiental , Metais , Poluentes Químicos da Água , Humanos , Medição de Risco , Poluentes Químicos da Água/análise , Bangladesh , Metais/análise , Feminino , Masculino , Sedimentos Geológicos/química , Criança , Metais Pesados/análise
13.
Food Chem Toxicol ; : 114580, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467293

RESUMO

This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/policies/article-withdrawal.

14.
J Biomol Struct Dyn ; 41(8): 3413-3429, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-35272575

RESUMO

Nowadays, a nanostructure-based drug delivery system is one of the most noticeable topics to be studied, and in this regard, boron nitride nanoclusters are promising drug carriers for targeted drug delivery systems. In this article, the interaction mechanism of Anagrelide (AG) drug with B12N12 and Al- and Ga-doped B12N12 nanocages have been investigated using DFT with B3LYP/6-31 G (d, p) method in both gas and water media. All our studied complexes are thermodynamically stable, and doped nanocage complexes have higher negative adsorption energy (EAd.) and negative solvation energy than AG/B12N12 complexes which correspond to the stability of these systems in both media. The negative highest EAd value is 64.98 kcal/mol (63.17 kcal/mol) and 65.69 kcal/mol (65.11 kcal/mol) in gas (water) media for complex F (AG/AlB11N12) and complex I (AG/GaB11N12) respectively, which refers to the highest stability of these systems. The enhanced values of dipole moment (from 12.40 (12.65) Debye to 17.21 (17.69) Debye in complex F (complex I)) also confirm their stability. The QTAIM and RDG analysis endorse the strong adsorption nature of the AG drug onto the AlB11N12, and GaB11N12 nanocages, which is consistent with the adsorption energy as chemisorption occurs for these complexes. According to the electronic properties, doped nanocages show high sensitivity that infers their promising nature for drug delivery purposes. Thus, complex F and complex I are promising drug delivery systems, and doped nanocages (AlB11N12 and GaB11N12) are better carriers than pristine nanocages for the AG drug delivery system.Communicated by Ramaswamy H. Sarma.


Assuntos
Compostos de Boro , Portadores de Fármacos , Nanoestruturas , Quinazolinas , Quinazolinas/administração & dosagem , Quinazolinas/química , Compostos de Boro/química , Nanoestruturas/química , Portadores de Fármacos/química , Adsorção , Teoria da Densidade Funcional , Teoria Quântica
15.
Vaccines (Basel) ; 11(2)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36851217

RESUMO

BACKGROUND: Methamphetamine (METH) substance-use disorder is an ever-growing global health issue with no effective treatment. Anti-METH vaccines are under investigation as an alternative to existing psychological interventions. This platform has made significant progress over past decades mainly in preclinical stages, and efforts to develop an anti-METH vaccine with a high antibody response are of utmost importance. METHODOLOGY: A novel conjugated anti-METH vaccine was developed using METH HCl as the starting material for the design of hapten, a peptide linker consisting of five lysines and five glycines, and finally immunogenic carrier mannan, which is novel to this platform. All the chemical reaction steps were confirmed by several analytical techniques, and the immunogenicity of the developed vaccine was investigated in a mouse model. RESULTS: Thin-layer chromatography and gas chromatography confirmed the reaction between METH and peptide linker. UV, NMR and color tests were used to confirm the presence of the aldehyde groups in oxidized mannan (OM). The final conjugated vaccine was confirmed by UV and LC-MS. The stability of mannan, the METH hapten, and the final vaccine was evaluated by UV and LC-MS and demonstrated satisfactory stability over 3 months in various storage conditions. Animal studies supported the immunogenicity of the novel vaccine. CONCLUSIONS: We successfully developed and characterized a novel METH vaccine in vitro and in vivo. The present study findings are encouraging and will form the basis of further exploration to assess its effectiveness to prevent METH addiction in preclinical models.

16.
Trop Med Health ; 51(1): 70, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38115037

RESUMO

BACKGROUND: Severe acute respiratory infection (SARI) is a leading cause of mortality globally, peaking during the COVID-19 pandemic. We analyzed SARI-associated deaths during the pre-and-pandemic periods in Bangladesh to identify the contributing factors. METHODS: We analyzed data from hospital-based influenza surveillance at nine tertiary-level hospitals in Bangladesh. We considered March 2018-February 2020 as the pre-pandemic period and March 2020-February 2022 as the pandemic period and included adult (≥ 18 years) participants in our study. Surveillance physicians identified WHO-SARI case definition meeting inpatients and collected demographics, clinical characteristics, and outcomes at hospital discharge and 30 days post-discharge. We performed rRT-PCR for influenza and SARS-CoV-2 viruses on collected nasopharyngeal and oropharyngeal swabs. We used multivariable Cox's regression models to calculate the hazard ratio (HR) for factors associated with SARI deaths in these adult patients. RESULTS: We enrolled 4392 SARI patients during the pre-pandemic and 3824 SARI patients during the pandemic period. Case fatality ratio was higher during the pandemic: 13.62% (521) [in-hospital: 6.45% (247); post-discharge: 7.17% (274)] compared to pre-pandemic, 6.01% (264) [in-hospital: 2.01% (89), post-discharge: 4% (175)] (p < 0.001). Pre-pandemic, influenza was detected in 14% (37/264) of SARI deaths. Influenza was detected during the pandemic in 2.3% (12/521), SARS-CoV-2 in 41.8% (218/521), and both viruses in only one SARI death. History of smoking and the presence of 1 or more co-morbid conditions independently attributed to SARI deaths in adults in the pre-pandemic period. SARI deaths in such patients were also associated with respiratory difficulties on admission in both pre-pandemic (aHR 2.36; 95% CI:1.65-3.36) and pandemic period (aHR 2.30; 95% CI: 1.57-3.35) after accounting for age, sex, smoking status, presence of 1 or more co-morbid conditions, and detection of influenza and SARS-CoV-2 viruses. CONCLUSIONS: During the pandemic, SARI mortality increased; influenza-associated mortality declined, and SARS-CoV-2 caused over a third of SARI deaths. Post-discharge mortality was higher than in-hospital mortality during both periods. Limiting premature discharge and strengthening post-discharge monitoring and nursing services could reduce unexpected deaths. Formative research to better understand post-discharge mortality is essential to reduce SARI deaths.

17.
Micromachines (Basel) ; 14(11)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-38004900

RESUMO

This article provides a comprehensive review of wide and ultrawide bandgap power electronic semiconductor devices, comparing silicon (Si), silicon carbide (SiC), gallium nitride (GaN), and the emerging device diamond technology. Key parameters examined include bandgap, critical electric field, electron mobility, voltage/current ratings, switching frequency, and device packaging. The historical evolution of each material is traced from early research devices to current commercial offerings. Significant focus is given to SiC and GaN as they are now actively competing with Si devices in the market, enabled by their higher bandgaps. The paper details advancements in material growth, device architectures, reliability, and manufacturing that have allowed SiC and GaN adoption in electric vehicles, renewable energy, aerospace, and other applications requiring high power density, efficiency, and frequency operation. Performance enhancements over Si are quantified. However, the challenges associated with the advancements of these devices are also elaborately described: material availability, thermal management, gate drive design, electrical insulation, and electromagnetic interference. Alongside the cost reduction through improved manufacturing, material availability, thermal management, gate drive design, electrical insulation, and electromagnetic interference are critical hurdles of this technology. The review analyzes these issues and emerging solutions using advanced packaging, circuit integration, novel cooling techniques, and modeling. Overall, the manuscript provides a timely, rigorous examination of the state of the art in wide bandgap power semiconductors. It balances theoretical potential and practical limitations while assessing commercial readiness and mapping trajectories for further innovation. This article will benefit researchers and professionals advancing power electronic systems.

18.
Environ Sci Pollut Res Int ; 30(15): 45398-45413, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36705833

RESUMO

Using Oreochromis niloticus (L.), commonly known as tilapia, as a model, this study evaluated the exposure of trace metal and their risk assessment on human health. In addition, the status of amino acids, fatty acids, vital elements, and their benefits is also studied. Estimating the nutrient composition of fish muscle is necessary to ensure that it meets the requirements for human health, food regulations, and commercial specifications. The species examined contained appreciable concentrations of amino acids, fatty acid content, and minerals, suggesting that the fish species could be a good source of protein, fat, and minerals. Hazardous heavy metals were found to be lower compared to their corresponding maximum tolerable limits. The order of trace metals is Zn (22,709 µg/kg) > Fe (19,878 µg/kg) > Cu (1261 µg /kg) > Mn (1228 µg/kg) > Cr (474 µg/kg) > Ni (152 µg/kg) As (318 µg /kg) > Pb (281 µg/kg) > Co (24 µg /kg) > Cd (13 µg/kg) > Hg (5 µg/kg); a number of health-related indices, including estimated daily intake (EDI), target hazard quotient (THQ), and hazard index (HI), as well as carcinogenic risk (CR) indices for adult and children, were calculated to evaluate the human health hazard of the heavy metals. The THQ and HI of heavy metals for tilapia are lower than 1, posing a non-carcinogenic threat to human health due to the biomagnifications of these deadly poisonous metals. Principal component, cluster, and correlation analyses delineated the common probabilistic sources of metal contamination origin and significant inter-parameter associations. Although no human health risks for the consumption of tilapia was found, more attention must be paid for the monitoring of Oreochromis niloticus before entering the market.


Assuntos
Ciclídeos , Mercúrio , Metais Pesados , Tilápia , Oligoelementos , Poluentes Químicos da Água , Animais , Adulto , Criança , Humanos , Ciclídeos/metabolismo , Bangladesh , Metais Pesados/análise , Mercúrio/análise , Oligoelementos/análise , Tilápia/metabolismo , Medição de Risco , Monitoramento Ambiental , Poluentes Químicos da Água/análise
19.
Sci Rep ; 13(1): 19978, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37968367

RESUMO

Hilsa shad (Tenualosa ilisha, Hamilton, 1822), the highly coveted table fish within the Indian subcontinent, is Bangladesh's most significant single-species fishery. To assess the risk that toxic metals pose to human health, certain health risk indices-estimated daily intake (EDI), target hazard quotient (THQ), total target hazard quotient (TTHQ), and target cancer risk (TR)-were calculated. The hierarchy of toxic metals (µg/g-ww) in Hilsa shad of the bay showed as Zn (13.64 ± 2.18) > Fe (9.25 ± 1.47) > Mn (2.98 ± 0.75) > Cu (0.57 ± 0.18) > Cr (0.23 ± 0.06) > Pb (0.22 ± 0.04) > As (0.08 ± 0.02) > Ni (0.06 ± 0.02) > Co (0.04 ± 0.01) > Cd (0.01 ± 0.003) in the wet season and Zn (11.45 ± 1.97) > Fe (10.51 ± 1.38) > Mn (3.80 ± 0.75) > Cu (0.73 ± 0.17) > Pb (0.30 ± 0.03) > Cr (0.20 ± 0.05) > As (0.09 ± 0.01) > Ni (0.08 ± 0.02) > Co (0.07 ± 0.02) > Cd (0.02 ± 0.004) in the dry season. The EDI of all the examined trace metals indicated no risk to human health from consuming Hilsa fish. The estimation of THQ and TTHQ suggested that the ingestion of both individual and combined trace metals through Hilsa shad consumption was safe from the perspective of human health. Also, there was no evidence of carcinogenic risk for consumers based on the evaluation of the TR value of metals (As, Pb, Cd, and Ni) due to Hilsa shad consumption.


Assuntos
Metais Pesados , Oligoelementos , Animais , Humanos , Cádmio , Bangladesh , Chumbo , Mianmar , Peixes , Índia , Metais Pesados/análise , Medição de Risco , Monitoramento Ambiental
20.
Heliyon ; 9(9): e20040, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37809952

RESUMO

Despite the beneficial aspect of a natural drainage system, increasing human-induced activities, which include urbanization and growth in industrialization, degrade the ecosystem in terms of trace metal contamination. In response, given the great importance of the south-eastern drainage system in Bangladesh, a detailed evaluation of the human health risk as well as the potential ecological risk of trace metals (Be, Cd, Co, Cr, Cu, Hg, Ni, Pb, Se, V, Zn, and As) in Karnaphuli riverbed sediment was conducted. Mean levels of the elements in mg/kg were As (5.62 ± 1.47); Se (0.84 ± 0.61); Hg (0.37 ± 0.23); Be (1.17 ± 0.49); Pb (15.62 ± 8.42); Cd (0.24 ± 0.33); Co (11.59 ± 4.49); Cr (112.75 ± 40.09); Cu (192.67 ± 49.71); V (27.49 ± 10.95); Zn (366.83 ± 62.82); Ni (75.83 ± 25.87). Pollution indicators, specifically contamination factor (CF), pollution load index (PLI), degree of contamination (Cd), enrichment factor (EF), geo-accumulation index (Igeo), and potential ecological risk index (RI), were computed to assess sediment quality. For the first observation of health risk, chronic daily intake (CDI), hazard quotient (HQ), hazard index (HI), carcinogenic risk (CR) and total carcinogenic risk (TCR) indices were calculated. According to the results, CDI values through the ingestion route of both the adult and child groups were organized in the following descending mode respectively: Zn > Cu > Cr > Ni > V > Pb > Co > As > Se > Be > Cd > Hg. The non-carcinogenic risks were generally low for all routes of exposure, except HQingestion was slightly higher for both adults and children. The calculated hazard index (HI) was, nevertheless, within the permitted range (HI < 1). Similarly, none of the metals exhibited any carcinogenic risks, as all CR values were within the 10-4-10-6 range. The need for authoritative efforts and water policy for the sake of the surrounding ecosystem and human health in the vicinity of the examined watershed is strongly felt as an outcome of this study. The purpose of this study is to protect public health by identifying trace metal sources and reducing industrial and domestic discharge into this natural drainage system.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa