Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
1.
Chemistry ; 30(33): e202400933, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609334

RESUMO

A relaxin-like gonad-stimulating peptide (RGP), Aso-RGP, featuring six cysteine residues, was identified in the Crown-of-Thorns Starfish (COTS, Acanthaster cf. solaris) and initially produced through recombinant yeast expression. This method yielded a single-chain peptide with an uncleaved C-peptide (His Tag) and suboptimal purity. Our objective was to chemically synthesize Aso-RGP in its mature form, comprising two chains (A and B) and three disulfide bridges, omitting the C-peptide. Furthermore, we aimed to synthesize a newly identified relaxin-like peptide, Aso-RLP2, from COTS, which had not been previously synthesized. This paper reports the first total chemical synthesis of Aso-RGP and Aso-RLP2. Aso-RGP synthesis proceeded without major issues, whereas the A-chain of Aso-RLP2, in its reduced and unfolded state with two free thiols, presented considerable challenges. These were initially marked by "messy" RP-HPLC profiles, typically indicative of synthesis failure. Surprisingly, oxidizing the A-chain significantly improved the RP-HPLC profile, revealing the main issue was not synthesis failure but the peptide's aggregation tendency, which initially obscured analysis. This discovery highlights the critical need to account for aggregation in peptide synthesis and analysis. Ultimately, our efforts led to the successful synthesis of both peptides with purities exceeding 95 %.


Assuntos
Dissulfetos , Peptídeos , Estrelas-do-Mar , Estrelas-do-Mar/química , Dissulfetos/química , Peptídeos/química , Peptídeos/síntese química , Animais , Cromatografia Líquida de Alta Pressão , Sequência de Aminoácidos , Cisteína/química , Oxirredução
2.
J Am Chem Soc ; 145(37): 20242-20247, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37439676

RESUMO

Peptides and peptidomimetics are attractive drug candidates because of their high target specificity and low-toxicity profiles. Developing peptidomimetics using hydrocarbon (HC)-stapling or other stapling strategies has gained momentum because of their high stability and resistance to proteases; however, they have limitations. Here, we take advantage of the α-methyl group and an aromatic phenyl ring in a unique unnatural amino acid, α-methyl-l-phenylalanine (αF), and propose a novel, noncovalent stapling strategy to stabilize peptides. We utilized this strategy to create an α-helical B-chain mimetic of a complex insulin-like peptide, human relaxin-3 (H3 relaxin). Our comprehensive data set (in vitro, ex vivo, and in vivo) confirmed that the new high-yielding B-chain mimetic, H3B10-27(13/17αF), is remarkably stable in serum and fully mimics the biological function of H3 relaxin. H3B10-27(13/17αF) is an excellent scaffold for further development as a drug lead and an important tool to decipher the physiological functions of the neuropeptide G protein-coupled receptor, RXFP3.


Assuntos
Peptidomiméticos , Relaxina , Humanos , Relaxina/química , Relaxina/metabolismo , Receptores Acoplados a Proteínas G/química , Conformação Proteica em alfa-Hélice , Fenilalanina
3.
Bioconjug Chem ; 34(6): 1014-1018, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37192432

RESUMO

Exenatide was the first marketed GLP-1 receptor agonist for the treatment of type 2 diabetes. Modification to the chemical structure or the formulation has the potential to increase the stability of exenatide. We introduced human complex-type sialyloligosaccharide to exenatide at the native Asn28 position. The synthesis was achieved using both solid phase peptide synthesis (SPPS) and Omniligase-1-mediated chemoenzymatic ligation. The results demonstrate that glycosylation increases the proteolytic stability of exenatide while retaining its full biological activity.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Exenatida , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes , Glicosilação , Peptídeo Hidrolases , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Peçonhas
4.
Chem Rev ; 121(8): 4531-4560, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33689304

RESUMO

The pancreatic peptide hormone insulin, first discovered exactly 100 years ago, is essential for glycemic control and is used as a therapeutic for the treatment of type 1 and, increasingly, type 2 diabetes. With a worsening global diabetes epidemic and its significant health budget imposition, there is a great demand for new analogues possessing improved physical and functional properties. However, the chemical synthesis of insulin's intricate 51-amino acid, two-chain, three-disulfide bond structure, together with the poor physicochemical properties of both the individual chains and the hormone itself, has long represented a major challenge to organic chemists. This review provides a timely overview of the past efforts to chemically assemble this fascinating hormone using an array of strategies to enable both correct folding of the two chains and selective formation of disulfide bonds. These methods not only have contributed to general peptide synthesis chemistry and enabled access to the greatly growing numbers of insulin-like and cystine-rich peptides but also, today, enable the production of insulin at the synthetic efficiency levels of recombinant DNA expression methods. They have led to the production of a myriad of novel analogues with optimized structural and functional features and of the feasibility for their industrial manufacture.


Assuntos
Técnicas de Química Sintética/métodos , Insulina/síntese química , Sequência de Aminoácidos , Animais , Humanos , Insulina/análogos & derivados , Insulina/química , Conformação Proteica
5.
Int J Mol Sci ; 24(16)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37628851

RESUMO

Human relaxin-2 (H2 relaxin) is a peptide hormone with potent vasodilatory and anti-fibrotic effects, which is of interest for the treatment of heart failure and fibrosis. H2 relaxin binds to the Relaxin Family Peptide Receptor 1 (RXFP1). Native H2 relaxin is a two-chain, three-disulfide-bond-containing peptide, which is unstable in human serum and difficult to synthesize efficiently. In 2016, our group developed B7-33, a single-chain peptide derived from the B-chain of H2 relaxin. B7-33 demonstrated poor affinity and potency in HEK cells overexpressing RXFP1; however, it displayed equivalent potency to H2 relaxin in fibroblasts natively expressing RXFP1, where it also demonstrated the anti-fibrotic effects of the native hormone. B7-33 reversed organ fibrosis in numerous pre-clinical animal studies. Here, we detail our efforts towards a minimal H2 relaxin scaffold and attempts to improve scaffold activity through Aib substitution and hydrocarbon stapling to re-create the peptide helicity present in the native H2 relaxin.


Assuntos
Insuficiência Cardíaca , Hormônios Peptídicos , Relaxina , Animais , Humanos , Relaxina/farmacologia , Fibroblastos , Insuficiência Cardíaca/tratamento farmacológico , Domínios Proteicos
6.
Int J Mol Sci ; 24(7)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37047588

RESUMO

Human relaxin-2 (H2 relaxin) is therapeutically very important due to its strong anti-fibrotic, vasodilatory, and cardioprotective effects. Therefore, relaxin's receptor, relaxin family peptide receptor 1 (RXFP1), is a potential target for the treatment of fibrosis and related disorders, including heart failure. H2 relaxin has a complex two-chain structure (A and B) and three disulfide bridges. Our laboratory has recently developed B7-33 peptide, a single-chain agonist based on the B-chain of H2 relaxin. However, the peptide B7-33 has a short circulation time in vitro in serum (t1/2 = ~6 min). In this study, we report structure-activity relationship studies on B7-33 utilizing different fatty-acid conjugations at different positions. We have shown that by fatty-acid conjugation with an appropriate spacer length, the in vitro half-life of B7-33 can be increased from 6 min to 60 min. In the future, the lead lipidated molecule will be studied in animal models to measure its PK/PD properties, which will lead to their pre-clinical applications.


Assuntos
Relaxina , Animais , Humanos , Relaxina/farmacologia , Receptores Acoplados a Proteínas G/química , Relação Estrutura-Atividade , Fibrose
7.
Cell Tissue Res ; 389(1): 1-9, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35596811

RESUMO

The gastrointestinal hormone, insulin-like peptide 5 (INSL5), is found in large intestinal enteroendocrine cells (EEC). One of its functions is to stimulate nerve circuits that increase propulsive activity of the colon through its receptor, the relaxin family peptide 4 receptor (RXFP4). To investigate the mechanisms that link INSL5 to stimulation of propulsion, we have determined the localisation of cells expressing Rxfp4 in the mouse colon, using a reporter mouse to locate cells expressing the gene. The fluorescent signal indicating the location of Rxfp4 expression was in EEC, the greatest overlap of Rxfp4-dependent labelling being with cells containing 5-HT. In fact, > 90% of 5-HT cells were positive for Rxfp4 labelling. A small proportion of cells with Rxfp4-dependent labelling was 5-HT-negative, 11-15% in the distal colon and rectum, and 35% in the proximal colon. Of these, some were identified as L-cells by immunoreactivity for oxyntomodulin. Rxfp4-dependent fluorescence was also found in a sparse population of nerve endings, where it was colocalised with CGRP. We used the RXFP4 agonist, INSL5-A13, to activate the receptor and probe the role of the 5-HT cells in which it is expressed. INSL5-A13 administered by i.p. injection to conscious mice caused an increase in colorectal propulsion that was antagonised by the 5-HT3 receptor blocker, alosetron, also given i.p. We conclude that stimuli that excite INSL5-containing colonic L-cells release INSL5 that, through RXFP4, excites 5-HT release from neighbouring endocrine cells, which in turn acts on 5-HT3 receptors of enteric sensory neurons to elicit propulsive reflexes.


Assuntos
Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/metabolismo , Relaxina , Animais , Células Enterocromafins/metabolismo , Células Enteroendócrinas/metabolismo , Intestino Grosso , Camundongos , Serotonina
8.
FASEB J ; 35(5): e21595, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33908676

RESUMO

Current histological measurement techniques for interstitial collagen, the basis of interstitial fibrosis, are semi-quantitative at best and only provide a ratio of collagen levels within tissues. The Genesis200 imaging system and supplemental image analysis software, FibroIndex from HistoIndex, is a novel, automated platform that uses second-harmonic generation (SHG) for imaging and characterization of interstitial collagen deposition and additional characteristics, in the absence of any staining. However, its ability to quantify renal fibrosis requires investigation. This study compared SHG imaging of renal fibrosis in mice with unilateral ureteric obstruction (UUO), to that of Masson's trichrome staining (MTS) and immunohistochemistry (IHC) of collagen I. Additionally, the platform generated data on collagen morphology and distribution patterns. While all three methods determined that UUO-injured mice underwent significantly increased renal fibrosis after 7 days, the HistoIndex platform additionally determined that UUO-injured mice had a significantly increased collagen-to-tissue cross reticulation ratio (all P < .001 vs sham group). Furthermore, in UUO-injured mice treated with the relaxin family peptide receptor-1 agonists, relaxin (0.5 mg/kg/day) or B7-33 (0.25 mg/kg/day), or angiotensin converting enzyme-inhibitor, perindopril (1 mg/kg/day) over the 7-day period, only the HistoIndex platform determined that the drug-induced prevention of renal fibrosis correlated with significantly reduced collagen fiber thickness and collagen-to-tissue cross reticulation ratio, but increased collagen fiber counts. Relaxin or B7-33 treatment also increased renal matrix metalloproteinase-2 and reduced tissue inhibitor of metalloproteinase-1 levels (all P < .01 vs UUO alone). This study demonstrated the diagnostic value of the HistoIndex platform over currently used staining techniques.


Assuntos
Fibrose/patologia , Nefropatias/patologia , Fragmentos de Peptídeos/farmacologia , Relaxina/farmacologia , Obstrução Ureteral/complicações , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Animais , Fibrose/tratamento farmacológico , Fibrose/etiologia , Nefropatias/tratamento farmacológico , Nefropatias/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
9.
Mol Biol Rep ; 49(11): 10875-10883, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35931874

RESUMO

The process of cell division plays a vital role in cancer progression. Cell proliferation and error-free chromosomes segregation during mitosis are central events in life cycle. Mistakes during cell division generate changes in chromosome content and alter the balances of chromosomes number. Any defects in expression of TIF1 family proteins, SAC proteins network, mitotic checkpoint proteins involved in chromosome mis-segregation and cancer development. Here we discuss the function of organelles deal with the chromosome segregation machinery, proteins and correction mechanisms involved in the accurate chromosome segregation during mitosis.


Assuntos
Segregação de Cromossomos , Neoplasias , Humanos , Mitose/genética , Ciclo Celular/genética , Pontos de Checagem da Fase M do Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Neoplasias/genética , Neoplasias/terapia , Cinetocoros/metabolismo
10.
Int J Mol Sci ; 23(13)2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35806076

RESUMO

Chronic NLRP3 inflammasome activation can promote fibrosis through its production of interleukin (IL)-1ß and IL-18. Conversely, recombinant human relaxin (RLX) can inhibit the pro-fibrotic interactions between IL-1ß, IL-18 and transforming growth factor (TGF)-ß1. Here, the broader extent by which RLX targeted the myofibroblast NLRP3 inflammasome to mediate its anti-fibrotic effects was elucidated. Primary human cardiac fibroblasts (HCFs), stimulated with TGF-ß1 (to promote myofibroblast (HCMF) differentiation), LPS (to prime the NLRP3 inflammasome) and ATP (to activate the NLRP3 inflammasome) (T+L+A) or benzoylbenzoyl-ATP (to activate the ATP receptor; P2X7R) (T+L+Bz), co-expressed relaxin family peptide receptor-1 (RXFP1), the angiotensin II type 2 receptor (AT2R) and P2X7R, and underwent increased protein expression of toll-like receptor (TLR)-4, NLRP3, caspase-1, IL-1ß and IL-18. Whilst RLX co-administration to HCMFs significantly prevented the T+L+A- or T+L+Bz-stimulated increase in these end points, the inhibitory effects of RLX were annulled by the pharmacological antagonism of either RXFP1, AT2R, P2X7R, TLR-4, reactive oxygen species (ROS) or caspase-1. The RLX-induced amelioration of left ventricular inflammation, cardiomyocyte hypertrophy and fibrosis in isoproterenol (ISO)-injured mice, was also attenuated by P2X7R antagonism. Thus, the ability of RLX to ameliorate the myofibroblast NLRP3 inflammasome as part of its anti-fibrotic effects, appeared to involve RXFP1, AT2R, P2X7R and the inhibition of TLR-4, ROS and caspase-1.


Assuntos
Inflamassomos , Relaxina , Trifosfato de Adenosina/metabolismo , Angiotensina II/metabolismo , Animais , Caspase 1/metabolismo , Fibrose , Inflamassomos/metabolismo , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Camundongos , Miofibroblastos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Relaxina/metabolismo , Relaxina/farmacologia , Receptor 4 Toll-Like/metabolismo
11.
Bioconjug Chem ; 32(10): 2148-2153, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34494823

RESUMO

The current commercially available glucagon formulations for the treatment of severe hypoglycemia must be reconstituted immediately prior to use, owing to the susceptibility of glucagon to fibrillation and aggregation in an aqueous solution. This results in the inconvenience of handling, misuse, and wastage of this drug. To address these issues, we synthesized a glycosylated glucagon analogue in which the 25th residue (Trp) was replaced with a cysteine (Cys) and a Br-disialyloligosaccharide was conjugated at the Cys thiol moiety. The resulting analogue, glycoglucagon, is a highly potent full agonist at the glucagon receptor. Importantly, glycoglucagon exhibits markedly reduced propensity for fibrillation and enhanced thermal and metabolic stability. This novel analogue is thus a valuable lead for producing stable liquid glucagon formulations that will improve patient compliance and minimize wastage.


Assuntos
Glucagon , Hipoglicemia , Cisteína , Humanos
12.
J Am Chem Soc ; 142(3): 1164-1169, 2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31850747

RESUMO

Glycosylation is an accepted strategy to improve the therapeutic value of peptide and protein drugs. Insulin and its analogues are life-saving drugs for all type I and 30% of type II diabetic patients. However, they can readily form fibrils which is a significant problem especially for their use in insulin pumps. Because of the solubilizing and hydration effects of sugars, it was thought that glycosylation of insulin could inhibit fibril formation and lead to a more stable formulation. Since enzymatic glycosylation results in heterogeneous products, we developed a novel chemical strategy to produce a homogeneous glycoinsulin (disialo-glycoinsulin) in excellent yield (∼60%). It showed a near-native binding affinity for insulin receptors A and B in vitro and high glucose-lowering effects in vivo, irrespective of the route of administration (s.c. vs i.p.). The glycoinsulin retained insulin-like helical structure and exhibited improved stability in human serum. Importantly, our disialo-glycoinsulin analogue does not form fibrils at both high concentration and temperature. Therefore, it is an excellent candidate for clinical use in insulin pumps.


Assuntos
Glucose/química , Insulina/síntese química , Glicosilação , Humanos , Insulina/química , Microscopia de Força Atômica
13.
Biochem Biophys Res Commun ; 533(3): 559-564, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-32980116

RESUMO

Human ghrelin receptor (GHSR) is a recognized prospective target in the diagnosis and therapy of multiple cancer types. To gain a better understanding of this receptor signaling system, we have synthesized a novel full-length ghrelin analog that is fluorescently labeled at the side-chain of a C-terminal cysteine extension. This analog exhibited nanomolar affinity and potency for the ghrelin receptor. It shows comparable efficacy with that of endogenous ghrelin. The fluorescently-labeled ghrelin analog is a valuable tool for in vitro imaging of cell lines that express ghrelin receptor.


Assuntos
Grelina/análogos & derivados , Grelina/síntese química , Proteínas Luminescentes/síntese química , Proteínas Luminescentes/metabolismo , Fluorescência , Células HEK293 , Humanos , Proteínas Luminescentes/química , Receptores de Grelina/metabolismo
14.
Pharmacol Res ; 152: 104602, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31846761

RESUMO

Diabesity is the combination of type 2 diabetes and obesity characterized by chronic low-grade inflammation. The Wnt signaling act as an evolutionary pathway playing crucial role in regulating cellular homeostasis and energy balance from hypothalamus to metabolic organs. Aberrant activity of certain appendages in the canonical and non-canonical Wnt system deregulates metabolism and leads to adipose tissue expansion, this key event initiates metabolic stress causing metaflammation and obesity. Metaflammation induced obesity initiates abnormal development of adipocytes mediating through the non-canonical Wnt signaling inhibition of canonical Wnt pathway to fan the flames of adipogenesis. Moreover, activation of toll like receptor (TLR)-4 signaling in metabolic stress invites immune cells to release pro-inflammatory cytokines for recruitment of macrophages in adipose tissues, further causes polarization of macrophages into M1(classically activated) and M2 (alternatively activated) subtypes. These events end with chronic low-grade inflammation which interferes with insulin signaling in metabolic tissues to develop type 2 diabetes. However, there is a dearth in understanding the exact mechanism of Wnt-TLR axis during diabesity. This review dissects the molecular facets of Wnt and TLRs that modulates cellular components during diabesity and provides current progress, challenges and alternative therapeutic strategies at preclinical and clinical level.


Assuntos
Adipogenia , Diabetes Mellitus Tipo 2/metabolismo , Obesidade/metabolismo , Receptores Toll-Like/metabolismo , Proteínas Wnt/metabolismo , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Humanos , Inflamação/metabolismo , Obesidade/tratamento farmacológico , Transdução de Sinais
15.
J Biol Chem ; 293(41): 15777-15789, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30131340

RESUMO

The relaxin-3 neuropeptide activates the relaxin family peptide 3 (RXFP3) receptor to modulate stress, appetite, and cognition. RXFP3 shows promise as a target for treating neurological disorders, but realization of its clinical potential requires development of smaller RXFP3-specific drugs that can penetrate the blood-brain barrier. Designing such drugs is challenging and requires structural knowledge of agonist- and antagonist-binding modes. Here, we used structure-activity data for relaxin-3 and a peptide RXFP3 antagonist termed R3 B1-22R to guide receptor mutagenesis and develop models of their binding modes. RXFP3 residues were alanine-substituted individually and in combination and tested in cell-based binding and functional assays to refine models of agonist and antagonist binding to active- and inactive-state homology models of RXFP3, respectively. These models suggested that both agonists and antagonists interact with RXFP3 via similar residues in their B-chain central helix. The models further suggested that the B-chain Trp27 inserts into the binding pocket of RXFP3 and interacts with Trp138 and Lys271, the latter through a salt bridge with the C-terminal carboxyl group of Trp27 in relaxin-3. R3 B1-22R, which does not contain Trp27, used a non-native Arg23 residue to form cation-π and salt-bridge interactions with Trp138 and Glu141 in RXFP3, explaining a key contribution of Arg23 to affinity. Overall, relaxin-3 and R3 B1-22R appear to share similar binding residues but may differ in binding modes, leading to active and inactive RXFP3 conformational states, respectively. These mechanistic insights may assist structure-based drug design of smaller relaxin-3 mimetics to manage neurological disorders.


Assuntos
Peptídeos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Relaxina/metabolismo , Sítios de Ligação , Células HEK293 , Humanos , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Peptídeos/síntese química , Peptídeos/química , Ligação Proteica , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/genética , Relaxina/síntese química , Relaxina/química , Eletricidade Estática
16.
J Biol Chem ; 293(41): 15765-15776, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30131342

RESUMO

The neuropeptide relaxin-3 and its receptor relaxin family peptide receptor-3 (RXFP3) play key roles in modulating behavior such as memory and learning, food intake, and reward seeking. A linear relaxin-3 antagonist (R3 B1-22R) based on a modified and truncated relaxin-3 B-chain was recently developed. R3 B1-22R is unstructured in solution; thus, the binding conformation and determinants of receptor binding are unclear. Here, we have designed, chemically synthesized, and pharmacologically characterized more than 60 analogues of R3 B1-22R to develop an extensive understanding of its structure-activity relationships. We show that the key driver for affinity is the nonnative C-terminal Arg23 Additional contributors to binding include amino acid residues that are important also for relaxin-3 binding, including Arg12, Ile15, and Ile19 Intriguingly, amino acid residues that are not exposed in native relaxin-3, including Phe14 and Ala17, also interact with RXFP3. We show that R3 B1-22R has a propensity to form a helical structure, and modifications that support a helical conformation are functionally well-tolerated, whereas helix breakers such as proline residues disrupt binding. These data suggest that the peptide adopts a helical conformation, like relaxin-3, upon binding to RXFP3, but that its smaller size allows it to penetrate deeper into the orthosteric binding site, creating more extensive contacts with the receptor.


Assuntos
Peptídeos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Relaxina/metabolismo , Alanina/análogos & derivados , Alanina/síntese química , Alanina/química , Alanina/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Células CHO , Cricetulus , Humanos , Peptídeos/síntese química , Peptídeos/química , Ligação Proteica , Conformação Proteica em alfa-Hélice , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/química , Relaxina/síntese química , Relaxina/química , Relação Estrutura-Atividade
17.
Chemistry ; 25(36): 8599-8603, 2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-30924212

RESUMO

Structure-activity relationship studies are a highly time-consuming aspect of peptide-based drug development, particularly in the assembly of disulfide-rich peptides, which often requires multiple synthetic steps and purifications. Therefore, it is vital to develop rapid and efficient chemical methods to readily access the desired peptides. We have developed a photolysis-mediated "one-pot" strategy for regioselective disulfide bond formation. The new pairing system utilises two ortho-nitroveratryl protected cysteines to generate two disulfide bridges in less than one hour in good yield. This strategy was applied to the synthesis of complex disulfide-rich peptides such as Rho-conotoxin ρ-TIA and native human insulin.


Assuntos
Dissulfetos/química , Peptídeos/metabolismo , Raios Ultravioleta , Conotoxinas/química , Conotoxinas/metabolismo , Humanos , Insulina/química , Insulina/metabolismo , Oxirredução , Peptídeos/química , Fotólise , Dobramento de Proteína , Estereoisomerismo , Relação Estrutura-Atividade
18.
Acc Chem Res ; 50(9): 2116-2127, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28829564

RESUMO

The insulin superfamily of peptides is ubiquitous within vertebrates and invertebrates and is characterized by the presence of a set of three disulfide bonds in a unique disposition. With the exception of insulin-like growth factors I and II, which are single chain peptides, the remaining 8 members of the human insulin superfamily are two-chain peptides containing one intramolecular and two intermolecular disulfide bridges. These structural features have long made the chemical synthesis of the peptides a considerable challenge, in particular, including their correct disulfide bond pairing and formation. However, they have also afforded the opportunity to develop modern solid phase synthesis methods for the preparation of such peptides that incorporate novel or improved chemical methods for the controlled introduction of both disulfide bonds and their surrogates, both during and after peptide chain assembly. In turn, this has enabled a detailed probing of the structure and function relationship of this small but complex superfamily of peptides. After initially using and subsequently identifying significant limitations of the approach of simultaneous random chain combination and oxidative folding, our laboratory undertook to develop robust chemical synthesis strategies in concert with orthogonal cysteine S-protecting groups and corresponding regioselective disulfide bond formation. These have included the separate synthesis of each of the two chains or of the two chains linked by an artificial C-peptide that is removed following postoxidative folding. These, in turn, have enabled an increased ease of acquisition in a good yield of not only members of human insulin superfamily but other insulin-like peptides. Importantly, these successful methods have enabled, for the first time, a detailed analysis of the role that the disulfide bonds play in the structure and function of such peptides. This was achieved by selective removal of the disulfide bonds or by the judicious insertion of disulfide isosteres that possess structurally subtle variations in bond length, hydrophobicity, and angle. These include lactam, dicarba, and cystathionine, each of which has required modifications to the peptide synthesis protocols for their successful placement within the peptides. Together, these synthesis improvements and the novel chemical developments of cysteine/cystine analogues have greatly aided in the development of novel insulin-like peptide (INSL) analogues, principally with intra-A-chain disulfide isosteres, possessing not only improved functional properties such as increased receptor selectivity but also, with one important and unexpected exception, greater in vivo half-lives due to stability against disulfide reductases. Such analogues greatly will aid further biochemical and pharmacological analyses to delineate the structure-function relationships of INSLs and also future potential drug development.

19.
Amino Acids ; 50(8): 1101-1110, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29770868

RESUMO

Melittin is the peptide toxin found in bee venom and is effective against cancer cells. To enhance its activity, a branched dimeric form of melittin was designed. The monomeric form of the peptide was more cytotoxic against gastric cancer cells at low concentrations (1-5 µM) than the dimer form, while the cytotoxic effect was comparable at higher concentrations (10 µM). Confocal microscopy showed that both the monomer and dimer forms of melittin with fluorescent label at the C terminus penetrated the cytoplasm and localized at the cell nucleus and disrupted the cell membrane. The results indicated that both peptides localized in the nucleus and no significant difference in penetration was observed between monomer and dimer of melittin. Although the C and N termini are important for melittin activity, using C terminus for dimerization of the peptide resulted in similar activity for the monomer and dimer against bacteria and gastric cancer cells.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Venenos de Abelha/química , Meliteno/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Animais , Antibacterianos/química , Antibacterianos/uso terapêutico , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dimerização , Feminino , Bactérias Gram-Negativas/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Humanos , Meliteno/química , Meliteno/uso terapêutico , Camundongos/sangue , Camundongos Endogâmicos BALB C , Camundongos Nus , Microscopia Confocal , Metástase Neoplásica/prevenção & controle , Membrana Nuclear/metabolismo , Conformação Proteica , Espécies Reativas de Oxigênio/metabolismo , Técnicas de Síntese em Fase Sólida
20.
Bioorg Med Chem ; 26(10): 2827-2841, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28988628

RESUMO

Peptidomimetics are designed to overcome the poor pharmacokinetics and pharmacodynamics associated with the native peptide or protein on which they are based. The design of peptidomimetics starts from developing structure-activity relationships of the native ligand-target pair that identify the key residues that are responsible for the biological effect of the native peptide or protein. Then minimization of the structure and introduction of constraints are applied to create the core active site that can interact with the target with high affinity and selectivity. Developing peptidomimetics is not trivial and often challenging, particularly when peptides' interaction mechanism with their target is complex. This review will discuss the challenges of developing peptidomimetics of therapeutically important insulin superfamily peptides, particularly those which have two chains (A and B) and three disulfide bonds and whose receptors are known, namely insulin, H2 relaxin, H3 relaxin, INSL3 and INSL5.


Assuntos
Descoberta de Drogas/métodos , Insulina/química , Insulina/farmacologia , Peptidomiméticos/química , Peptidomiméticos/farmacologia , Relaxina/química , Relaxina/farmacologia , Sequência de Aminoácidos , Animais , Desenho de Fármacos , Humanos , Modelos Moleculares , Receptor de Insulina/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa