Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 51(16): 9013-9021, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28700243

RESUMO

This work examines particulate chloride (Cl-) and bromide (Br-) depletion in marine aerosol particles influenced by wildfires at a coastal California site in the summers of 2013 and 2016. Chloride exhibited a dominant coarse mode due to sea salt influence, with substantially diminished concentrations during fire periods as compared to nonfire periods. Bromide exhibited a peak in the submicrometer range during fire and nonfire periods, with an additional supermicrometer peak in the latter periods. Chloride and Br- depletions were enhanced during fire periods as compared to nonfire periods. The highest observed %Cl- depletion occurred in the submicrometer range, with maximum values of 98.9% (0.32-0.56 µm) and 85.6% (0.56-1 µm) during fire and nonfire periods, respectively. The highest %Br- depletion occurred in the supermicrometer range during fire and nonfire periods with peak depletion between 1.8-3.2 µm (78.8% and 58.6%, respectively). When accounting for the neutralization of sulfate by ammonium, organic acid particles showed the greatest influence on Cl- depletion in the submicrometer range. These results have implications for aerosol hygroscopicity and radiative forcing in areas with wildfire influence owing to depletion effects on composition.


Assuntos
Poluentes Atmosféricos , Brometos , Aerossóis , California , Monitoramento Ambiental , Incêndios , Tamanho da Partícula
2.
J Geophys Res Atmos ; 125(12)2020 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-33204580

RESUMO

The MONterey Aerosol Research Campaign (MONARC) in May-June 2019 featured 14 repeated identical flights off the California coast over the open ocean at the same time each flight day. The objective of this study is to use MONARC data along with machine learning analysis to evaluate relationships between both supermicrometer sea salt aerosol number (N>1) and volume (V>1) concentrations and wind speed, wind direction, sea surface temperature (SST), ambient temperature (Tamb), turbulent kinetic energy (TKE), relative humidity (RH), marine boundary layer (MBL) depth, and drizzle rate. Selected findings from this study include the following: (i) Near surface (<60 m) N>1 and V>1 concentration ranges were 0.1-4.6 cm-3 and 0.3-28.2 µm3 cm-3, respectively; (ii) four meteorological regimes were identified during MONARC with each resulting in different N>1 and V>1 concentrations and also varying horizontal and vertical profiles; (iii) the relative predictive strength of the MBL properties varies depending on predicting N>1 or V>1, with MBL depth being more highly ranked for predicting N>1 and with TKE being higher for predicting V>1; (iv) MBL depths >400 m (<200 m) often correspond to lower (higher) N>1 and V>1 concentrations; (v) enhanced drizzle rates coincide with reduced N>1 and V>1 concentrations; (vi) N>1 and V>1 concentrations exhibit an overall negative relationship with SST and RH and an overall positive relationship with Tamb; and (vii) wind speed and direction were relatively weak predictors of N>1 and V>1.

3.
Atmos Chem Phys ; 20(13): 7645-7665, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33273899

RESUMO

Aerosol-cloud interactions are the largest source of uncertainty in quantifying anthropogenic radiative forcing. The large uncertainty is, in part, due to the difficulty of predicting cloud microphysical parameters, such as the cloud droplet number concentration (N d). Even though rigorous first-principle approaches exist to calculate N d, the cloud and aerosol research community also relies on empirical approaches such as relating N d to aerosol mass concentration. Here we analyze relationships between N d and cloud water chemical composition, in addition to the effect of environmental factors on the degree of the relationships. Warm, marine, stratocumulus clouds off the California coast were sampled throughout four summer campaigns between 2011 and 2016. A total of 385 cloud water samples were collected and analyzed for 80 chemical species. Single- and multispecies log-log linear regressions were performed to predict N d using chemical composition. Single-species regressions reveal that the species that best predicts N d is total sulfate ( R adj 2 = 0.40 ). Multispecies regressions reveal that adding more species does not necessarily produce a better model, as six or more species yield regressions that are statistically insignificant. A commonality among the multispecies regressions that produce the highest correlation with N d was that most included sulfate (either total or non-sea-salt), an ocean emissions tracer (such as sodium), and an organic tracer (such as oxalate). Binning the data according to turbulence, smoke influence, and in-cloud height allowed for examination of the effect of these environmental factors on the composition-N d correlation. Accounting for turbulence, quantified as the standard deviation of vertical wind speed, showed that the correlation between N d with both total sulfate and sodium increased at higher turbulence conditions, consistent with turbulence promoting the mixing between ocean surface and cloud base. Considering the influence of smoke significantly improved the correlation with N d for two biomass burning tracer species in the study region, specifically oxalate and iron. When binning by in-cloud height, non-sea-salt sulfate and sodium correlated best with N d at cloud top, whereas iron and oxalate correlated best with N d at cloud base.

4.
Sci Total Environ ; 633: 42-49, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-29573690

RESUMO

Lake Urmia (LU) once was the second largest hypersaline lake in the world, covering up to 6000km2, but has undergone catastrophic desiccation in recent years resulting in loss of 90% of its area and extensive coverage by playas and marshlands that represent a source of salt and dust. This study examines daily Aerosol Optical Depth (AOD) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) between 2001 and 2015 over northwestern Iran, which encompasses LU. Intriguingly, salt emissions from the LU surface associated with ongoing desiccation do not drive the study region's AOD profile, whereas pollution transported from other regions and emissions around LU are more important. Signatures of increasing local crustal emissions are most evident outside of the peak dust season (January, February, and October) and on the periphery of LU. AOD has generally increased in the latter half of the study period with the onset of the AOD ramp-up starting a month earlier in the spring season when comparing 2009-2015 versus earlier years. Results indicate that suppression of emissions on the LU border is critical as the combined area of salt and salty soil bodies around LU have increased by two orders of magnitude in the past two decades, and disturbing these areas via activities such as grazing and salt harvesting on the lake surface can have more detrimental impacts on regional pollution as compared to benefits. These results have important implications for public health, climate, the hydrological cycle, and pollution control efforts.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa