Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 93(15)2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31092578

RESUMO

Respiratory syncytial virus (RSV) infection of seronegative children previously immunized with formalin-inactivated (FI) RSV has been associated with serious enhanced respiratory disease (ERD). The phenomenon was reproduced in the cotton rat and the mouse, and both preclinical models have been routinely used to evaluate the safety of new RSV vaccine candidates. More recently, we demonstrated that immunizations with suboptimal doses of the RSV fusion (F) antigen, in its post- or prefusion conformation, and in the presence of a Th1-biasing adjuvant, unexpectedly led to ERD in the cotton rat model. To assess if those observations are specific to the cotton rat and to elucidate the mechanism by which vaccination with low antigen doses can drive ERD post-RSV challenge, we evaluated RSV post-F antigen dose de-escalation in BALB/c mice in the presence of a Th1-biasing adjuvant. While decreasing antigen doses, we observed an increase in lung inflammation associated with an upregulation of proinflammatory cytokines. The amplitude of the lung histopathology was comparable to that of FI-RSV-induced ERD, confirming the observations made in the cotton rat. Importantly, depletion of CD4+ T cells prior to viral challenge completely abrogated ERD, preventing proinflammatory cytokine upregulation and the infiltration of T cells, neutrophils, eosinophils, and macrophages into the lung. Overall, low-antigen-dose-induced ERD resembles FI-RSV-induced ERD, except that the former appears in the absence of detectable levels of viral replication and in the context of a Th1-biased immune response. Taken together, our observations reinforce the recent concept that vaccines developed for RSV-naïve individuals should be systematically tested under suboptimal dosing conditions.IMPORTANCE RSV poses a significant health care burden and is the leading cause of serious lower-respiratory-tract infections in young children. A formalin-inactivated RSV vaccine developed in the 1960s not only showed a complete lack of efficacy against RSV infection but also induced severe lung disease enhancement in vaccinated children. Since then, establishing safety in preclinical models has been one of the major challenges to RSV vaccine development. We recently observed in the cotton rat model that suboptimal immunizations with RSV fusion protein could induce lung disease enhancement. In the present study, we extended suboptimal dosing evaluation to the mouse model. We confirmed the induction of lung disease enhancement by vaccinations with low antigen doses and dissected the associated immune mechanisms. Our results stress the need to evaluate suboptimal dosing for any new RSV vaccine candidate developed for seronegative infants.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Imunização/métodos , Pneumopatias/patologia , Infecções por Vírus Respiratório Sincicial/patologia , Vacinas contra Vírus Sincicial Respiratório/efeitos adversos , Proteínas Virais de Fusão/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Modelos Animais de Doenças , Imunização/efeitos adversos , Pulmão/patologia , Pneumopatias/fisiopatologia , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Vírus Respiratório Sincicial/fisiopatologia , Vacinas contra Vírus Sincicial Respiratório/administração & dosagem , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/efeitos adversos
2.
J Virol ; 91(8)2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28148790

RESUMO

Respiratory syncytial virus (RSV) infection of children previously immunized with a nonlive, formalin-inactivated (FI)-RSV vaccine has been associated with serious enhanced respiratory disease (ERD). Consequently, detailed studies of potential ERD are a critical step in the development of nonlive RSV vaccines targeting RSV-naive children and infants. The fusion glycoprotein (F) of RSV in either its postfusion (post-F) or prefusion (pre-F) conformation is a target for neutralizing antibodies and therefore an attractive antigen candidate for a pediatric RSV subunit vaccine. Here, we report the evaluation of RSV post-F and pre-F in combination with glucopyranosyl lipid A (GLA) integrated into stable emulsion (SE) (GLA-SE) and alum adjuvants in the cotton rat model. Immunization with optimal doses of RSV F antigens in the presence of GLA-SE induced high titers of virus-neutralizing antibodies and conferred complete lung protection from virus challenge, with no ERD signs in the form of alveolitis. To mimic a waning immune response, and to assess priming for ERD under suboptimal conditions, an antigen dose de-escalation study was performed in the presence of either GLA-SE or alum. At low RSV F doses, alveolitis-associated histopathology was unexpectedly observed with either adjuvant at levels comparable to FI-RSV-immunized controls. This occurred despite neutralizing-antibody titers above the minimum levels required for protection and with no/low virus replication in the lungs. These results emphasize the need to investigate a pediatric RSV vaccine candidate carefully for priming of ERD over a wide dose range, even in the presence of strong neutralizing activity, Th1 bias-inducing adjuvant, and protection from virus replication in the lower respiratory tract.IMPORTANCE RSV disease is of great importance worldwide, with the highest burden of serious disease occurring upon primary infection in infants and children. FI-RSV-induced enhanced disease, observed in the 1960s, presented a major and ongoing obstacle for the development of nonlive RSV vaccine candidates. The findings presented here underscore the need to evaluate a nonlive RSV vaccine candidate during preclinical development over a wide dose range in the cotton rat RSV enhanced-disease model, as suboptimal dosing of several RSV F subunit vaccine candidates led to the priming for ERD. These observations are relevant to the validity of the cotton rat model itself and to safe development of nonlive RSV vaccines for seronegative infants and children.


Assuntos
Anticorpos Facilitadores , Infecções por Vírus Respiratório Sincicial/imunologia , Vacinas contra Vírus Sincicial Respiratório/imunologia , Células Th1/imunologia , Células Th2/imunologia , Proteínas Virais de Fusão/imunologia , Adjuvantes Imunológicos/administração & dosagem , Compostos de Alúmen/administração & dosagem , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Modelos Animais de Doenças , Lipídeo A/administração & dosagem , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vacinas contra Vírus Sincicial Respiratório/genética , Sigmodontinae , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Proteínas Virais de Fusão/genética
3.
PLoS One ; 12(11): e0188708, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29182682

RESUMO

Respiratory syncytial virus (RSV) is recognized as an important cause of lower and upper respiratory tract infections in older adults, and a successful vaccine would substantially lower morbidity and mortality in this age group. Recently, two vaccine candidates based on soluble purified glycoprotein F (RSV F), either alone or adjuvanted with glucopyranosyl lipid A formulated in a stable emulsion (GLA-SE), failed to reach their primary endpoints in clinical efficacy studies, despite demonstrating the desired immunogenicity profile and efficacy in young rodent models. Here, one of the RSV F vaccine candidates (post-fusion conformation, RSV post-F), and a stabilized pre-fusion form of RSV F (RSV pre-F, DS-Cav1) were evaluated in aged BALB/c mice. Humoral and cellular immunogenicity elicited after immunization of naïve, aged mice was generally lower compared to young animals. In aged mice, RSV post-F vaccination without adjuvant poorly protected the respiratory tract from virus replication, and addition of GLA-SE only improved protection in the lungs, but not in nasal turbinates. RSV pre-F induced higher neutralizing antibody titers compared to RSV post-F (as previously reported) but interestingly, RSV F-specific CD8 T cell responses were lower compared to RSV post-F responses regardless of age. The vaccines were also tested in RSV seropositive aged mice, in which both antigen forms similarly boosted neutralizing antibody titers, although GLA-SE addition boosted neutralizing activity only in RSV pre-F immunized animals. Cell-mediated immune responses in the aged mice were only slightly boosted and well below levels induced in seronegative young mice. Taken together, the findings suggest that the vaccine candidates were not able to induce a strong anti-RSV immune response in recipient mice with an aged immune system, in agreement with recent human clinical trial results. Therefore, the aged mouse model could be a useful tool to evaluate improved vaccine candidates, targeted to prevent RSV disease in older adults.


Assuntos
Fatores Etários , Proteínas Recombinantes de Fusão/imunologia , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vírus Sinciciais Respiratórios/imunologia , Animais , Anticorpos Antivirais/biossíntese , Humanos , Imunidade Celular , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Vírus Respiratório Sincicial/imunologia , Vírus Sinciciais Respiratórios/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa