Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
Intervalo de ano de publicação
1.
Diabetes Obes Metab ; 21(10): 2294-2304, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31183936

RESUMO

AIMS: We previously quantified the hypoglycaemia-sparing effect of portal vs peripheral human insulin delivery. The current investigation aimed to determine whether a bioequivalent peripheral vein infusion of a hepatopreferential insulin analog, insulin-406, could similarly protect against hypoglycaemia. MATERIALS AND METHODS: Dogs received human insulin infusions into either the hepatic portal vein (PoHI, n = 7) or a peripheral vein (PeHI, n = 7) for 180 minutes at four-fold the basal secretion rate (6.6 pmol/kg/min) in a previous study. Insulin-406 (Pe406, n = 7) was peripherally infused at 6.0 pmol/kg/min, a rate determined to decrease plasma glucose by the same amount as with PoHI infusion during the first 60 minutes. Glucagon was fixed at basal concentrations, mimicking the diminished α-cell response seen in type 1 diabetes. RESULTS: Glucose dropped quickly with PeHI infusion, reaching 41 ± 3 mg/dL at 60 minutes, but more slowly with PoHI and Pe406 infusion (67 ± 2 and 72 ± 4 mg/dL, respectively; P < 0.01 vs PeHI for both). The hypoglycaemic nadir (c. 40 mg/dL) occurred at 60 minutes with PeHI infusion vs 120 minutes with PoHI and Pe406 infusion. ΔAUCepinephrine during the 180-minute insulin infusion period was two-fold higher with PeHI infusion compared with PoHI and Pe406 infusion. Glucose production (mg/kg/min) was least suppressed with PeHI infusion (Δ = 0.79 ± 0.33) and equally suppressed with PoHI and Pe406 infusion (Δ = 1.16 ± 0.21 and 1.18 ± 0.17, respectively; P = NS). Peak glucose utilization (mg/kg/min) was highest with PeHI infusion (4.94 ± 0.17) and less with PoHI and Pe406 infusion (3.58 ± 0.58 and 3.26 ± 0.08, respectively; P < 0.05 vs Pe for both). CONCLUSIONS: Peripheral infusion of hepatopreferential insulin can achieve a metabolic profile that closely mimics portal insulin delivery, which reduces the risk of hypoglycaemia compared with peripheral insulin infusion.


Assuntos
Hipoglicemiantes , Insulina Regular Humana , Insulina , Veia Porta/metabolismo , Animais , Glicemia/análise , Glicemia/metabolismo , Diabetes Mellitus Tipo 1 , Cães , Gluconeogênese , Humanos , Hipoglicemia/metabolismo , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/farmacologia , Infusões Intravenosas , Insulina/administração & dosagem , Insulina/análogos & derivados , Insulina/sangue , Insulina/farmacologia , Insulina Regular Humana/administração & dosagem , Insulina Regular Humana/farmacologia , Fígado/metabolismo , Masculino
2.
Pharm Res ; 36(3): 49, 2019 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-30746556

RESUMO

PURPOSE: Fast-acting insulin aspart (faster aspart) is a novel formulation of insulin aspart containing two additional excipients: niacinamide, to increase early absorption, and L-arginine, to optimize stability. The aim of this study was to evaluate the impact of niacinamide on insulin aspart absorption and to investigate the mechanism of action underlying the accelerated absorption. METHODS: The impact of niacinamide was assessed in pharmacokinetic analyses in pigs and humans, small angle X-ray scattering experiments, trans-endothelial transport assays, vascular tension measurements, and subcutaneous blood flow imaging. RESULTS: Niacinamide increased the rate of early insulin aspart absorption in pigs, and pharmacokinetic modelling revealed this effect to be most pronounced up to ~30-40 min after injection in humans. Niacinamide increased the relative monomer fraction of insulin aspart by ~35%, and the apparent permeability of insulin aspart across an endothelial cell barrier by ~27%. Niacinamide also induced a concentration-dependent vasorelaxation of porcine arteries, and increased skin perfusion in pigs. CONCLUSION: Niacinamide mediates the acceleration of initial insulin aspart absorption, and the mechanism of action appears to be multifaceted. Niacinamide increases the initial abundance of insulin aspart monomers and transport of insulin aspart after subcutaneous administration, and also mediates a transient, local vasodilatory effect.


Assuntos
Diabetes Mellitus Tipo 1/tratamento farmacológico , Hipoglicemiantes/farmacocinética , Insulina Aspart/farmacocinética , Niacinamida/farmacologia , Absorção Subcutânea/efeitos dos fármacos , Animais , Células Cultivadas , Diabetes Mellitus Tipo 1/sangue , Relação Dose-Resposta a Droga , Células Endoteliais/metabolismo , Feminino , Humanos , Hipoglicemiantes/administração & dosagem , Injeções Subcutâneas , Insulina Aspart/administração & dosagem , Modelos Biológicos , Fluxo Sanguíneo Regional/efeitos dos fármacos , Espalhamento a Baixo Ângulo , Tela Subcutânea/irrigação sanguínea , Tela Subcutânea/efeitos dos fármacos , Tela Subcutânea/metabolismo , Sus scrofa , Vasodilatação/efeitos dos fármacos , Difração de Raios X
3.
Pharm Res ; 28(5): 1031-40, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21190067

RESUMO

PURPOSE: To study the effect of acylation on the adsorption of insulin to hydrophobic polystyrene beads. METHODS: Adsorption isotherms for adsorption of insulin and acylated insulin to hydrophobic polystyrene beads were established, and the adsorption of the two proteins was compared further with isothermal titration calorimetry. In addition, the secondary structure and the association behavior of the two proteins were studied with circular dichroism. RESULTS: Insulin and acylated insulin adsorbed with high affinity to the hydrophobic polystyrene beads. More acylated insulin molecules than insulin molecules adsorbed per unit surface area from solutions containing monomer-dimer mixtures of acylated insulin and insulin, respectively. In contrast, no difference was observed in the number of insulin and acylated insulin molecules adsorbing per unit surface area, when adsorption occurred from solutions containing monomer-dimer-hexamer mixtures. CONCLUSION: The influence of acylation on the adsorption behavior of insulin depends on the association degree of insulin, possibly due to a greater difference in hydrophobicity between monomeric insulin and acylated insulin than between the hexameric forms of these two proteins.


Assuntos
Insulina/química , Adsorção , Sequência de Aminoácidos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Dados de Sequência Molecular , Propriedades de Superfície
4.
Int J Pharm ; 440(1): 63-71, 2013 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-22310460

RESUMO

Acylation of proteins with a fatty acid chain has proven useful for prolonging the plasma half-lives of proteins. In formulation of acylated protein drugs, knowledge about the effect of acylation with fatty acids on the adsorption behaviour of proteins at interfaces will be valuable. The aim of this work was to study the effect of acylation on the adsorption of GLP-2 from aqueous solution to a hydrophobic surface by comparing the adsorption of the 3766 Da GLP-2 with that of a GLP-2 variant acylated with a 16-carbon fatty acid chain through a ß-alanine linker. Adsorption of GLP-2 and acylated GLP-2 were studied with isothermal titration calorimetry, fixed-angle optical reflectometry and total internal reflection fluorescence. Furthermore, the effect of acylation of GLP-2 on the secondary structure was studied with Far-UV CD. Acylation was observed to have several effects on the adsorption of GLP-2. Acylation increased the amount of GLP-2 adsorbing per unit surface area and decreased the initial adsorption rate of GLP-2. Finally, acylation increased the strength of the adsorption, as judged by the lower fraction desorbing upon rinsing with buffer.


Assuntos
Peptídeo 2 Semelhante ao Glucagon/química , Nanopartículas/química , Poliestirenos/química , Acilação , Adsorção , Interações Hidrofóbicas e Hidrofílicas
5.
Eur J Pharm Biopharm ; 77(1): 139-47, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21074613

RESUMO

PEGylation has proven useful for prolonging the plasma half lives of proteins, and since approval of the first PEGylated protein drug product by the FDA in 1990, several PEGylated protein drug products have been marketed. However, the influence of PEGylation on the behavior of proteins at interfaces is only poorly understood. The aim of this work was to study the effect of PEGylation on the adsorption of glucagon from aqueous solution to a hydrophobic surface and to compare the effects of PEGylation with a linear and a branched PEG chain, respectively. The 3483 Da peptide glucagon was PEGylated with a 2.2 kDa linear and a branched PEG chain, respectively, and the adsorption behaviors of the three proteins were compared using isothermal titration calorimetry, fixed-angle optical reflectometry and total internal reflection fluorescence. PEGylation decreased the number of glucagon molecules adsorbing per unit surface area and increased the initial adsorption rate of glucagon. Furthermore, the results indicated that the orientation and/or structural changes of glucagon upon adsorption were affected by the PEGylation. Finally, from the isothermal titration calorimetry and the reflectometry data, it was observed that the architecture of the PEG chains had an influence on the observed heat flow upon adsorption as well as on the initial rate of adsorption, respectively.


Assuntos
Glucagon/análogos & derivados , Glucagon/química , Polietilenoglicóis/química , Polímeros/química , Adsorção , Interações Hidrofóbicas e Hidrofílicas , Cinética , Peso Molecular , Poliestirenos/química , Conformação Proteica , Silanos/química , Propriedades de Superfície
6.
Eur J Pharm Sci ; 42(5): 509-16, 2011 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-21352910

RESUMO

Interfaces are present in the preparation of pharmaceutical products and are well known for having an influence on the physical stability of proteins. The aim of this study was to examine the conformation (i.e. secondary and tertiary structures) and fibrillation tendency, overall aggregation tendency and thermal stability of adsorbed human insulin at a solid particulate Teflon surface. The effects of changes in the association degree of insulin on the structure and stability have been determined. Using SEC-HPLC, association profiles were determined for insulin aspart, zinc-free human insulin and human insulin with two Zn(2+) per hexamer in concentrations ranging from 0.1 mg/ml to 20 mg/ml. Insulin aspart was 100% monomeric, regardless of concentration. In contrast, human insulin went from 100% monomer to 80% hexamer, and 20% dimer/monomer and zinc-free human insulin from 100% monomer to 70% dimer and 30% monomer with increasing concentration. The secondary structure of the insulins changed upon adsorption, but only minor differences were observed among the insulins. Structural changes were observed when the insulin-surface ratio was varied, but at no point did the structure resemble that of fibrillated insulin in solution. The presence of particles resulted in increased fibrillation of human insulin. The lag-time of fibrillation decreased, when the amount of particles present was increased. In conclusion, the type and association degree of the three insulin variants has no major influence on the secondary structure observed after adsorption of insulin at the solid Teflon surface. However, the presence of particles increases the tendency of insulin to fibrillate.


Assuntos
Hipoglicemiantes/química , Insulina/química , Politetrafluoretileno/química , Adsorção , Estabilidade de Medicamentos , Interações Hidrofóbicas e Hidrofílicas , Desnaturação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Propriedades de Superfície , Temperatura
7.
Eur J Pharm Sci ; 40(4): 273-81, 2010 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-20380877

RESUMO

In the pharmaceutical industry, protein drugs are modified by, for instance, glycosylation in order to obtain protein drugs with improved delivery profiles and/or increased stability. The effect of glycosylation on protein adsorption behaviour is one of the stability aspects that must be evaluated during development of glycosylated protein drug products. We have studied the effect of glycosylation on the adsorption behaviour of Thermomyces lanuginosus lipase to hydrophobic and hydrophilic surfaces using total internal reflection fluorescence, surface plasmon resonance, far-UV circular dichroism and fluorescence. Three glyco-variants were used, namely the mono-glycosylated wildtype T. lanuginosus lipase, a non-glycosylated variant and a penta-glycosylated variant, the latter two containing one and nine amino acid substitutions, respectively. All the glycosylations were N-linked and contained no charged sugar residues. Glycosylation did not affect the adsorption of wildtype T. lanuginosus lipase to the hydrophobic surfaces. The number of molecules adsorbing per unit surface area, the structural changes occurring upon adsorption, and the orientation upon adsorption were found to be unaffected by the varying glycosylation. However, the interaction with a hydrophilic surface was different between the three glyco-variants. The penta-glycosylated T. lanuginosus lipase adsorbed, in contrast to the two other glyco-variants. In conclusion, adsorption of T. lanuginosus lipase to hydrophobic surfaces was not affected by N-linked glycosylation. Only penta-glycosylated T. lanuginosus lipase adsorbed to the hydrophilic surface, apparently due to its increased net charge of +3 caused by amino acid substitutions in the primary sequence.


Assuntos
Ascomicetos/enzimologia , Enzimas Imobilizadas/química , Proteínas Fúngicas/química , Lipase/química , Adsorção , Substituição de Aminoácidos , Dicroísmo Circular , Estabilidade Enzimática , Glicosilação , Interações Hidrofóbicas e Hidrofílicas , Cinética , Peso Molecular , Proteínas Mutantes/química , Compostos de Organossilício/química , Estrutura Secundária de Proteína , Quartzo/química , Proteínas Recombinantes/química , Silanos/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Ressonância de Plasmônio de Superfície , Propriedades de Superfície
8.
Expert Opin Drug Deliv ; 6(11): 1219-30, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19678792

RESUMO

In the area of peptide and protein pharmaceuticals, both the physical and chemical stability of biopharmaceuticals are critical and need to be optimised when formulating a drug product, in order to optimise the outcome after processing and storage. This review focuses on the effects on the stability from various types of excipient and the choices that have to be made during formulation of drug products containing peptides or proteins. It is illustrated, through examples, how the choice of one excipient over another can affect the stability of a protein drug formulation, along with other problems linked to this choice. The excipients used in pharmaceutical preparations are limited and from an academic point of view there is a clear requirement for new excipients.


Assuntos
Química Farmacêutica/métodos , Estabilidade de Medicamentos , Excipientes/química , Peptídeos/uso terapêutico , Estabilidade Proteica , Proteínas/uso terapêutico , Animais , Composição de Medicamentos , Armazenamento de Medicamentos , Humanos , Peptídeos/química , Proteínas/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa