Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ann Bot ; 2024 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-39468731

RESUMO

BACKGROUND AND AIMS: Salicornia europaea L., a succulent euhalophyte plant, has been found to exhibit optimal reproductive capabilities under appropriate salinity concentrations. However, the underlying metabolic changes are not yet fully understood. METHODS: This study conducted a comprehensive analysis combining transcriptomic and lipidomic techniques to investigate the molecular mechanisms of lipid metabolism in response to different NaCl concentrations (0 and 200 mM). RESULTS: Transcriptomic data demonstrated that salt treatment mainly affected processes including lipid biosynthesis, phosphatidylinositol signaling, and glycerophospholipid metabolism. The expression levels of several key genes involved in salt tolerance, namely SeSOS1, SeNHX1, SeVHA-A, SeVP1, and SePSS, were found to be upregulated upon NaCl treatment. A total of 485 lipid compounds were identified, of which 27 changed in abundance under salt treatment, including the enrichment of phospholipids and sphingolipids. Moreover, the increase in the double-bond index (DBI) was mainly due to phospholipids and sphingolipids. Comparing the acyl chain length (ACL) showed that the ACL coefficient of S1P significantly decreased under 200 mM NaCl. CONCLUSIONS: This study suggests that S. europaea adapt to saline environments through altering phospholipids and sphingolipids to improve salt tolerance. The salinity response of S. europaea can provide important insights into the action of lipids and their salt adaptation mechanisms.

2.
World J Gastroenterol ; 30(18): 2440-2453, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38764767

RESUMO

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) with hepatic histological NAFLD activity score ≥ 4 and fibrosis stage F ≥ 2 is regarded as "at risk" non-alcoholic steatohepatitis (NASH). Based on an international consensus, NAFLD and NASH were renamed as metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH), respectively; hence, we introduced the term "high-risk MASH". Diagnostic values of seven non-invasive models, including FibroScan-aspartate transaminase (FAST), fibrosis-4 (FIB-4), aspartate transaminase to platelet ratio index (APRI), etc. for high-risk MASH have rarely been studied and compared in MASLD. AIM: To assess the clinical value of seven non-invasive models as alternatives to liver biopsy for diagnosing high-risk MASH. METHODS: A retrospective analysis was conducted on 309 patients diagnosed with NAFLD via liver biopsy at Beijing Ditan Hospital, between January 2012 and December 2020. After screening for MASLD and the exclusion criteria, 279 patients were included and categorized into high-risk and non-high-risk MASH groups. Utilizing threshold values of each model, sensitivity, specificity, positive predictive value (PPV), and negative predictive values (NPV), were calculated. Receiver operating characteristic curves were constructed to evaluate their diagnostic efficacy based on the area under the curve (AUROC). RESULTS: MASLD diagnostic criteria were met by 99.4% patients with NAFLD. The MASLD population was analyzed in two cohorts: Overall population (279 patients) and the subgroup (117 patients) who underwent liver transient elastography (FibroScan). In the overall population, FIB-4 showed better diagnostic efficacy and higher PPV, with sensitivity, specificity, PPV, NPV, and AUROC of 26.9%, 95.2%, 73.5%, 72.2%, and 0.75. APRI, Forns index, and aspartate transaminase to alanine transaminase ratio (ARR) showed moderate diagnostic efficacy, whereas S index and gamma-glutamyl transpeptidase to platelet ratio (GPR) were relatively weaker. In the subgroup, FAST had the highest diagnostic efficacy, its sensitivity, specificity, PPV, NPV, and AUROC were 44.2%, 92.3%, 82.1%, 67.4%, and 0.82. The FIB-4 AUROC was 0.76. S index and GPR exhibited almost no diagnostic value for high-risk MASH. CONCLUSION: FAST and FIB-4 could replace liver biopsy as more effectively diagnostic methods for high-risk MASH compared to APRI, Forns index, ARR, S index, and GPR; FAST is superior to FIB-4.


Assuntos
Aspartato Aminotransferases , Técnicas de Imagem por Elasticidade , Fígado , Hepatopatia Gordurosa não Alcoólica , Valor Preditivo dos Testes , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Aspartato Aminotransferases/sangue , Biomarcadores/sangue , Biópsia , Fígado/patologia , Fígado/diagnóstico por imagem , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Hepatopatia Gordurosa não Alcoólica/patologia , Contagem de Plaquetas , Estudos Retrospectivos , Medição de Risco/métodos , Fatores de Risco , Curva ROC , Sensibilidade e Especificidade , Índice de Gravidade de Doença
3.
Artigo em Inglês | MEDLINE | ID: mdl-38648136

RESUMO

The development of high-temperature nondestructive testing (NDT) requires ultrasonic transducers with good temperature resistance and high sensitivity for improved detection efficiency. Piezoelectric composite can improve the performance of transducers because of its high electromechanical coupling coefficient and adjustable acoustic impedance. In this study, 1-3-2 composites and 1-3-2 high-temperature composite ultrasonic transducers (HTCUTs) based on 0.36BiScO3-0.64PbTiO3 (BSPT), which is preferred piezoelectric materials at 200 ° C- 300 ° C, and high-temperature epoxy with a center frequency of 6 MHz were designed and fabricated. From 25 ° C to 250 ° C, 1-3-2 composites show a higher electromechanical coupling coefficient kt especially at high temperatures (~0.53 at 25 ° C and ~0.64 at 250 ° C) than monolithic BSPT (~0.5). The signal of the pulse-echo response of 1-3-2 HTCUTs is distinguishable up to 250 ° C and remains stable ( [Formula: see text] mV) below 150 ° C, exhibiting higher sensitivity (improved by 7 dB) than that of monolithic BSPT high-temperature ultrasonic transducers (HTUTs). Bandwidth has been greatly enhanced especially at high temperatures (~103% at 250 ° C) compared with that of monolithic BSPT HTUTs (~30% at 250 ° C). To verify the excellent performance, B-mode scanning imaging measurement of a stepped steel block and defect location detection of a steel block was performed, showing the potential for high-temperature NDT applications.

4.
Sci Adv ; 10(7): eadl2232, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38354252

RESUMO

Optical imaging and phototherapy in deep tissues face notable challenges due to light scattering. We use encoded acoustic holograms to generate three-dimensional acoustic fields within the target medium, enabling instantaneous and robust modulation of the volumetric refractive index, thereby noninvasively controlling the trajectory of light. Through this approach, we achieved a remarkable 24.3% increase in tissue heating rate in vitro photothermal effect tests on porcine skin. In vivo photoacoustic imaging of mouse brain vasculature exhibits an improved signal-to-noise ratio through the intact scalp and skull. These findings demonstrate that our strategy can effectively suppress light scattering in complex biological tissues by inducing low-angle scattering, achieving an effective depth reaching the millimeter scale. The versatility of this strategy extends its potential applications to neuroscience, lithography, and additive manufacturing.


Assuntos
Técnicas Fotoacústicas , Camundongos , Animais , Suínos , Técnicas Fotoacústicas/métodos , Fototerapia , Crânio , Acústica , Refratometria
5.
Artigo em Inglês | MEDLINE | ID: mdl-34847024

RESUMO

This study investigates the relationship between the composition segregation in lead magnesium niobate-lead titanate (PMN-PT; PMN-29%PT, PMN-29.5%PT, PMN-30%PT, PMN-30.5%PT, and PMN-31%PT) single crystals within morphotropic phase boundary (MPB) and the corresponding ultrasonic transducer performance through PiezoCAD modeling and real transducer testing. For five crystals with compositions distributed across the main body of a crystal ingot, the piezoelectric coefficient and free relative permittivity values were measured to vary by over 30%, whereas the transducer bandwidth and center frequency values were modeled to change by less than 10%. For the single-element ultrasonic transducers fabricated using those crystals without matching layers, the variations of -6-dB bandwidth, insertion loss, receiver-free field voltage response, and center frequency were measured to be 9.61%, -15.23%, 9.76%, and 1.41%, respectively, confirming the modeling results. Using the Mason and Krimholtz, Leedom, and Matthaei (KLM) models, it is found that the relatively stable transducer performance can be attributed to the relatively consistent electromechanical coupling coefficient, acoustic impedance, and clamped relative permittivity originated from the stable elastic compliance properties among the crystals of various compositions. It is expected that the relatively stable performance could be extended to multielement transducers with matching layers for the same contributing mechanisms. Our results suggest that it is possible to use crystal plates of different compositions within the MPB region, obtained from one and the same ingot, to fabricate a batch of ultrasonic transducers that will exhibit a similar performance, significantly reducing the cost of materials.


Assuntos
Transdutores , Ultrassom , Desenho de Equipamento
6.
Front Neurosci ; 16: 893108, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35801172

RESUMO

Transcranial ultrasound stimulation (TUS) is a young neuromodulation technology, which uses ultrasound to achieve non-invasive stimulation or inhibition of deep intracranial brain regions, with the advantages of non-invasive, deep penetration, and high resolution. It is widely considered to be one of the most promising techniques for probing brain function and treating brain diseases. In preclinical studies, developing miniaturized transducers to facilitate neuromodulation in freely moving small animals is critical for understanding the mechanism and exploring potential applications. In this article, a miniaturized transducer with a half-concave structure is proposed. Based on the finite element simulation models established by PZFlex software, several ultrasound transducers with different concave curvatures were designed and analyzed. Based on the simulation results, half-concave focused ultrasonic transducers with curvature radii of 5 mm and 7.5 mm were fabricated. Additionally, the emission acoustic fields of the ultrasonic transducers with different structures were characterized at their thickness resonance frequencies of 1 MHz using a multifunctional ultrasonic test platform built in the laboratory. To verify the practical ability for neuromodulation, different ultrasound transducers were used to induce muscle activity in mice. As a result, the stimulation success rates were (32 ± 10)%, (65 ± 8)%, and (84 ± 7)%, respectively, by using flat, #7, and #5 transducers, which shows the simulation and experimental results have a good agreement and that the miniaturized half-concave transducer could effectively converge the acoustic energy and achieve precise and effective ultrasonic neuromodulation.

7.
IEEE Trans Biomed Eng ; 69(1): 475-481, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34288870

RESUMO

Ultrasonic transducers with broad bandwidth are considered to have high axial resolution and good ultrasound scanning flexibility for the clinical applications. The limitations of spatial resolution due to bandwidth are of great concern in ultrasound medical imaging. The method of acoustic impedance matching between the piezoelectric element and medium is commonly used to obtain broad bandwidth and high resolution. In this study, an optimized backing layer design was proposed to broaden the bandwidth by adding a tunable acoustic impedance matching layer of backing (AIMLB) between the backing layer and the piezoelectric ceramic element. The Mason equivalent circuit method was used to analyze the effect of the backing material composition and its structure on the bandwidth of the transducer. The optimized transducer was simulated using the finite-element method with the PZFlex software. Based on the PZFlex simulations, a 20-MHz ultrasonic transducer using the AIMLB with a bandwidth of approximately 92.29% was fabricated. The experimental results were in good agreement with the simulations. The ultrasonic imaging indicated that the designed ultrasonic transducer with an additional AIMLB had high performance with good imaging capability.


Assuntos
Transdutores , Ultrassom , Cerâmica , Desenho de Equipamento , Ultrassonografia
8.
Artigo em Inglês | MEDLINE | ID: mdl-35020592

RESUMO

The high-frequency ultrasonic transducers with larger bandwidths yield excellent imaging performance in the biomedical field. However, achieving perfect acoustic impedance matching from the piezo-element to the target medium in the operating frequency spectrum is still a challenge. Conventional matching layers are mostly fabricated by only one or two uniform materials which are limited by their acoustic property. We propose a novel composite matching layer with gradient acoustic impedance based on a 1-3 gradient composite structure and multilevel matching theory. The proposed gradient-composite matching layer applied for ultrasonic transducer provides efficient impedance matching and ultrawide bandwidth which can significantly improve the quality of biomedical imaging. The active aperture size of the matching layer is 5× 5 mm2, and the overall thickness for five equivalent layers is 115 [Formula: see text]. The -6-dB bandwidth and the center frequency obtained by the ultrasonic transducer equipped with the 1-3 gradient composite matching layer are 141.7% and 22.3 MHz, respectively. The exceedingly good imaging performance of the fabricated ultrasonic transducer was demonstrated by the tungsten wire phantom and study on the biological tissues of a zebrafish and porcine eyeball. The theoretical and experimental results provide a novel train of thought for improving the quality of biomedical ultrasonic imaging.


Assuntos
Ultrassom , Peixe-Zebra , Acústica , Animais , Impedância Elétrica , Desenho de Equipamento , Suínos , Transdutores , Ultrassonografia/métodos
9.
iScience ; 24(1): 101988, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33490898

RESUMO

Acoustic micro-beams produced by highly focused ultrasound transducer have been investigated for micro-particle and cell manipulation. Here we report the selective trapping of microspheres via the acoustic force using the single acoustical beam. The forbidden band theory of acoustic radiation force trapping is proposed, which indicates that the trapping of particles via the acoustic beam is directly related to the particle diameter-to-beam wavelength ratio as well as excitation frequency of the ultrasonic acoustic tweezers. Three tightly focused LiNbO3 transducers with different center frequencies were fabricated for use as selective single beam acoustic tweezers (SBATs). These SBATs were capable of selectively manipulating microspheres of sizes 5-45 µm by adjusting the wavelength of acoustic beam. Our observations could introduce new avenues for research in biology and biophysics by promoting the development of a tool for selectively manipulating microspheres or cells of certain selected sizes, by carefully setting the acoustic beam shape and wavelength.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa