Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 95(35): 13156-13162, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37606955

RESUMO

Herein, by introducing gold nanostars (AuNSs) as fuel core, a near-infrared-driven nanorocket (NIDNR) with pretty fast walking was exploited for ultrasensitive miRNA detection. Compared with traditional nanomaterials-comprised nanomachines (NMs), the NIDNR possesses much better kinetic and thermodynamic performance owing to the extra photothermal driving force from localized surface plasmon (LSP). Impressively, the whole reaction time of NIDNR down to 15 min was realized, which is almost more than 8 times beyond those of conventional DNA-based NMs. This way, the inherent obstacle of traditional NMs, including long reaction time and low efficiency, could be easily addressed. As a proof of concept, the NIDNR was successfully applied to develop an electrochemical biosensing platform for rapid and sensitive detection of miRNA with an LOD down to 2.95 aM and achieved the real-time assay of real biological samples from human hepatocellular carcinoma cells (MHCC97L) and HeLa, thus providing an innovative insight to design more versatile DNA nanomachines for ultimate application in biosensing platform construction and clinical sample detection.


Assuntos
Espectroscopia de Luz Próxima ao Infravermelho , Espectroscopia de Luz Próxima ao Infravermelho/instrumentação , Espectroscopia de Luz Próxima ao Infravermelho/métodos , MicroRNAs/química , Fatores de Tempo , Ouro , Nanopartículas Metálicas/química , Técnicas Biossensoriais , Técnicas Reprodutivas , Humanos , Linhagem Celular Tumoral
2.
Anal Chem ; 94(29): 10524-10530, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35822933

RESUMO

In this work, an intelligent multiregion linear DNA walker (MLDW) with a high walking rate and a high amplification efficiency was explored for ultrasensitive detection of miRNA. Significantly, amounts of functional domain could be concentrated in a long linear DNA obtained by the target miRNA-mediated rolling-circle amplification to simultaneously increase the local concentration and collision probability, resulting in an obviously improved reaction rate. Impressively, the MLDW can accomplish the reaction within 30 min, which is at least 4 times beyond that of traditional single-leg and multiple-leg DNA walkers. As a proof of concept, the high-efficiency MLDW was used to develop an electrochemical biosensing platform for ultrasensitive detection of target miRNA-21 with a low detection limit down to 36 aM. Therefore, the MLDW we designed puts forward an innovative insight to construct a functional DNA nanodevice and promote the investigation of the inherent performance of nucleic acid signal amplification for ultimate application in the detection of biomolecules and clinical disease diagnosis.


Assuntos
Técnicas Biossensoriais , MicroRNAs , Técnicas Biossensoriais/métodos , DNA/química , Técnicas Eletroquímicas/métodos , Limite de Detecção , MicroRNAs/genética , Técnicas de Amplificação de Ácido Nucleico/métodos
3.
Biosens Bioelectron ; 267: 116719, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39243446

RESUMO

In this work, an ingenious dual-circle DNA walker (DCDW) with pretty fast walking speed and high amplification efficiency was developed for rapid and ultrasensitive electrochemical detection of microRNA-221 (miRNA-221) related to liver cancer, combined with the toehold-mediated strand-displacement reactions (TSDRs). Impressively, compared with the traditional DNA walker, the DCDW with unique double-stranded interlocked DNA nanostructure not only possesses higher stability, flexibility, and anti-entanglement ability, but also enables more functional domain in a smaller area, thereby enhancing the local concentration, which can greatly improve the working efficiency. As a validation, the electrochemical biosensor realized rapid and ultrasensitive detection of miRNA-221 with a reaction time of 15 min and detection limit down to 1.9 aM, and had been applied in MHCC97L and HeLa cancer cell lysates, thus providing an innovative insight to design intelligent functional interlocked DNA walkers for ultimate application in the construction of biosensing platform and miRNA detection in biological sample.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa