Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
PLoS Genet ; 12(5): e1006033, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27195491

RESUMO

Type 2 diabetes (T2D) is a complex metabolic disease associated with obesity, insulin resistance and hypoinsulinemia due to pancreatic ß-cell dysfunction. Reduced mitochondrial function is thought to be central to ß-cell dysfunction. Mitochondrial dysfunction and reduced insulin secretion are also observed in ß-cells of humans with the most common human genetic disorder, Down syndrome (DS, Trisomy 21). To identify regions of chromosome 21 that may be associated with perturbed glucose homeostasis we profiled the glycaemic status of different DS mouse models. The Ts65Dn and Dp16 DS mouse lines were hyperglycemic, while Tc1 and Ts1Rhr mice were not, providing us with a region of chromosome 21 containing genes that cause hyperglycemia. We then examined whether any of these genes were upregulated in a set of ~5,000 gene expression changes we had identified in a large gene expression analysis of human T2D ß-cells. This approach produced a single gene, RCAN1, as a candidate gene linking hyperglycemia and functional changes in T2D ß-cells. Further investigations demonstrated that RCAN1 methylation is reduced in human T2D islets at multiple sites, correlating with increased expression. RCAN1 protein expression was also increased in db/db mouse islets and in human and mouse islets exposed to high glucose. Mice overexpressing RCAN1 had reduced in vivo glucose-stimulated insulin secretion and their ß-cells displayed mitochondrial dysfunction including hyperpolarised membrane potential, reduced oxidative phosphorylation and low ATP production. This lack of ß-cell ATP had functional consequences by negatively affecting both glucose-stimulated membrane depolarisation and ATP-dependent insulin granule exocytosis. Thus, from amongst the myriad of gene expression changes occurring in T2D ß-cells where we had little knowledge of which changes cause ß-cell dysfunction, we applied a trisomy 21 screening approach which linked RCAN1 to ß-cell mitochondrial dysfunction in T2D.


Assuntos
Diabetes Mellitus Tipo 2/genética , Síndrome de Down/genética , Insulina/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Musculares/genética , Trifosfato de Adenosina/metabolismo , Aneuploidia , Animais , Proteínas de Ligação ao Cálcio , Cromossomos Humanos Par 21/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Síndrome de Down/metabolismo , Síndrome de Down/patologia , Regulação da Expressão Gênica , Glucose/metabolismo , Humanos , Hiperglicemia/genética , Hiperglicemia/metabolismo , Hiperglicemia/patologia , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Mitocôndrias/genética , Mitocôndrias/patologia , Proteínas Musculares/metabolismo , Biossíntese de Proteínas/genética
2.
J Proteome Res ; 14(5): 2036-45, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25849460

RESUMO

The International Mouse Phenotyping Consortium program has been established to ascribe biological functions to systematically knocked-out (KO) genes by in vivo and ex vivo phenotyping. The plasma clinical chemistry screen includes an assessment of liver, kidney, and bone function and provides a basic lipid profile and histopathology reports on 32 tissues. We report on the inclusion of plasma analysis by proton nuclear magnetic resonance ((1)H NMR) spectroscopy. (1)H NMR spectroscopy data are summarized from 116 running baseline controls with 18 homozygous and 2 heterozygous KO mouse lines along with wild-type controls (typically n = 7 per gender). For the baseline group, the intersample variation of (1)H NMR glucose measurement was 12%, and the (1)H NMR spectroscopy data were influenced by gender and feeding status. There were good correlations between the clinical chemistry and the (1)H NMR spectroscopy measurements for glucose, triglycerides, and HDL cholesterol. Significant differences were observed in two KO lines, Agl (MGI: 1924809) and Bbs5 (MGI: 1919819), by (1)H NMR spectroscopy, clinical chemistry, and histopathology. In a further two KO lines, Elmod1 (MGI: 3583900) and Emc10 (MGI: 1916933), (1)H NMR metabolic differences were observed, but no other ex vivo changes were detected. In the remaining 16 lines, no ex vivo abnormal phenotypes were observed. Plasma (1)H NMR spectroscopy can therefore provide a novel perspective on the function of knocked-out genes.


Assuntos
Metaboloma , Camundongos Knockout/sangue , Fenótipo , Animais , Osso e Ossos/química , Osso e Ossos/metabolismo , Feminino , Heterozigoto , Homozigoto , Rim/química , Rim/metabolismo , Fígado/química , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout/genética , Análise de Componente Principal , Espectroscopia de Prótons por Ressonância Magnética
3.
J Pathol ; 233(1): 18-26, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24293254

RESUMO

The study of mutations causing the steroid-resistant nephrotic syndrome in children has greatly advanced our understanding of the kidney filtration barrier. In particular, these genetic variants have illuminated the roles of the podocyte, glomerular basement membrane and endothelial cell in glomerular filtration. However, in a significant number of familial and early onset cases, an underlying mutation cannot be identified, indicating that there are likely to be multiple unknown genes with roles in glomerular permeability. We now show how the combination of N-ethyl-N-nitrosourea mutagenesis and next-generation sequencing could be used to identify the range of mutations affecting these pathways. Using this approach, we isolated a novel mouse strain with a viable nephrotic phenotype and used whole-genome sequencing to isolate a causative hypomorphic mutation in Lamb2. This discovery generated a model for one part of the spectrum of human Pierson's syndrome and provides a powerful proof of principle for accelerating gene discovery and improving our understanding of inherited forms of renal disease.


Assuntos
Anormalidades Múltiplas/genética , Análise Mutacional de DNA/métodos , Anormalidades do Olho/genética , Sequenciamento de Nucleotídeos em Larga Escala , Laminina/genética , Mutação , Síndrome Nefrótica/congênito , Distúrbios Pupilares/genética , Anormalidades Múltiplas/metabolismo , Anormalidades Múltiplas/patologia , Animais , Modelos Animais de Doenças , Etilnitrosoureia , Anormalidades do Olho/metabolismo , Anormalidades do Olho/patologia , Estudos de Associação Genética , Predisposição Genética para Doença , Túbulos Renais/metabolismo , Túbulos Renais/patologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Síndromes Miastênicas Congênitas , Síndrome Nefrótica/genética , Síndrome Nefrótica/metabolismo , Síndrome Nefrótica/patologia , Linhagem , Fenótipo , Proteinúria/genética , Proteinúria/metabolismo , Distúrbios Pupilares/metabolismo , Distúrbios Pupilares/patologia
4.
PLoS Genet ; 7(10): e1002336, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22028672

RESUMO

Otitis media with effusion (OME) is the commonest cause of hearing loss in children, yet the underlying genetic pathways and mechanisms involved are incompletely understood. Ventilation of the middle ear with tympanostomy tubes is the commonest surgical procedure in children and the best treatment for chronic OME, but the mechanism by which they work remains uncertain. As hypoxia is a common feature of inflamed microenvironments, moderation of hypoxia may be a significant contributory mechanism. We have investigated the occurrence of hypoxia and hypoxia-inducible factor (HIF) mediated responses in Junbo and Jeff mouse mutant models, which develop spontaneous chronic otitis media. We found that Jeff and Junbo mice labeled in vivo with pimonidazole showed cellular hypoxia in inflammatory cells in the bulla lumen, and in Junbo the middle ear mucosa was also hypoxic. The bulla fluid inflammatory cell numbers were greater and the upregulation of inflammatory gene networks were more pronounced in Junbo than Jeff. Hif-1α gene expression was elevated in bulla fluid inflammatory cells, and there was upregulation of its target genes including Vegfa in Junbo and Jeff. We therefore investigated the effects in Junbo of small-molecule inhibitors of VEGFR signaling (PTK787, SU-11248, and BAY 43-9006) and destabilizing HIF by inhibiting its chaperone HSP90 with 17-DMAG. We found that both classes of inhibitor significantly reduced hearing loss and the occurrence of bulla fluid and that VEGFR inhibitors moderated angiogenesis and lymphangiogenesis in the inflamed middle ear mucosa. The effectiveness of HSP90 and VEGFR signaling inhibitors in suppressing OM in the Junbo model implicates HIF-mediated VEGF as playing a pivotal role in OM pathogenesis. Our analysis of the Junbo and Jeff mutants highlights the role of hypoxia and HIF-mediated pathways, and we conclude that targeting molecules in HIF-VEGF signaling pathways has therapeutic potential in the treatment of chronic OM.


Assuntos
Orelha Média/metabolismo , Perda Auditiva/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Otite Média com Derrame/genética , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Vesícula/metabolismo , Vesícula/patologia , Líquidos Corporais/metabolismo , Hipóxia Celular/genética , Modelos Animais de Doenças , Orelha Média/efeitos dos fármacos , Orelha Média/patologia , Regulação da Expressão Gênica , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Perda Auditiva/etiologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Indóis/farmacologia , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Mutantes/genética , Nitroimidazóis/análise , Otite Média com Derrame/complicações , Ftalazinas/farmacologia , Piridinas/farmacologia , Pirróis/farmacologia , Receptores de Fatores de Crescimento do Endotélio Vascular/genética , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Transdução de Sinais , Sunitinibe , Fator A de Crescimento do Endotélio Vascular/genética
5.
JBMR Plus ; 7(6): e10739, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37283649

RESUMO

The nuclear factor I/X (NFIX) gene encodes a ubiquitously expressed transcription factor whose mutations lead to two allelic disorders characterized by developmental, skeletal, and neural abnormalities, namely, Malan syndrome (MAL) and Marshall-Smith syndrome (MSS). NFIX mutations associated with MAL mainly cluster in exon 2 and are cleared by nonsense-mediated decay (NMD) leading to NFIX haploinsufficiency, whereas NFIX mutations associated with MSS are clustered in exons 6-10 and escape NMD and result in the production of dominant-negative mutant NFIX proteins. Thus, different NFIX mutations have distinct consequences on NFIX expression. To elucidate the in vivo effects of MSS-associated NFIX exon 7 mutations, we used CRISPR-Cas9 to generate mouse models with exon 7 deletions that comprised: a frameshift deletion of two nucleotides (Nfix Del2); in-frame deletion of 24 nucleotides (Nfix Del24); and deletion of 140 nucleotides (Nfix Del140). Nfix +/Del2, Nfix +/Del24, Nfix +/Del140, Nfix Del24/Del24, and Nfix Del140/Del140 mice were viable, normal, and fertile, with no skeletal abnormalities, but Nfix Del2/Del2 mice had significantly reduced viability (p < 0.002) and died at 2-3 weeks of age. Nfix Del2 was not cleared by NMD, and NfixDel2/Del2 mice, when compared to Nfix +/+ and Nfix +/Del2 mice, had: growth retardation; short stature with kyphosis; reduced skull length; marked porosity of the vertebrae with decreased vertebral and femoral bone mineral content; and reduced caudal vertebrae height and femur length. Plasma biochemistry analysis revealed Nfix Del2/Del2 mice to have increased total alkaline phosphatase activity but decreased C-terminal telopeptide and procollagen-type-1-N-terminal propeptide concentrations compared to Nfix +/+ and Nfix +/Del2 mice. Nfix Del2/Del2 mice were also found to have enlarged cerebral cortices and ventricular areas but smaller dentate gyrus compared to Nfix +/+ mice. Thus, Nfix Del2/Del2 mice provide a model for studying the in vivo effects of NFIX mutants that escape NMD and result in developmental abnormalities of the skeletal and neural tissues that are associated with MSS. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

6.
Cardiovasc Res ; 118(7): 1742-1757, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34142125

RESUMO

AIMS: Cardiac arrhythmias comprise a major health and economic burden and are associated with significant morbidity and mortality, including cardiac failure, stroke, and sudden cardiac death (SCD). Development of efficient preventive and therapeutic strategies is hampered by incomplete knowledge of disease mechanisms and pathways. Our aim is to identify novel mechanisms underlying cardiac arrhythmia and SCD using an unbiased approach. METHODS AND RESULTS: We employed a phenotype-driven N-ethyl-N-nitrosourea mutagenesis screen and identified a mouse line with a high incidence of sudden death at young age (6-9 weeks) in the absence of prior symptoms. Affected mice were found to be homozygous for the nonsense mutation Bcat2p.Q300*/p.Q300* in the Bcat2 gene encoding branched chain amino acid transaminase 2. At the age of 4-5 weeks, Bcat2p.Q300*/p.Q300* mice displayed drastic increase of plasma levels of branch chain amino acids (BCAAs-leucine, isoleucine, valine) due to the incomplete catabolism of BCAAs, in addition to inducible arrhythmias ex vivo as well as cardiac conduction and repolarization disturbances. In line with these findings, plasma BCAA levels were positively correlated to electrocardiogram indices of conduction and repolarization in the German community-based KORA F4 Study. Isolated cardiomyocytes from Bcat2p.Q300*/p.Q300* mice revealed action potential (AP) prolongation, pro-arrhythmic events (early and late afterdepolarizations, triggered APs), and dysregulated calcium homeostasis. Incubation of human pluripotent stem cell-derived cardiomyocytes with elevated concentration of BCAAs induced similar calcium dysregulation and pro-arrhythmic events which were prevented by rapamycin, demonstrating the crucial involvement of mTOR pathway activation. CONCLUSIONS: Our findings identify for the first time a causative link between elevated BCAAs and arrhythmia, which has implications for arrhythmogenesis in conditions associated with BCAA metabolism dysregulation such as diabetes, metabolic syndrome, and heart failure.


Assuntos
Cálcio , Insuficiência Cardíaca , Aminoácidos de Cadeia Ramificada/metabolismo , Animais , Humanos , Camundongos , Miócitos Cardíacos/metabolismo , Sirolimo
7.
PLoS Genet ; 2(10): e149, 2006 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-17029558

RESUMO

Otitis media (OM), inflammation of the middle ear, remains the most common cause of hearing impairment in children. It is also the most common cause of surgery in children in the developed world. There is evidence from studies of the human population and mouse models that there is a significant genetic component predisposing to OM, yet nothing is known about the underlying genetic pathways involved in humans. We identified an N-ethyl-N-nitrosourea-induced dominant mouse mutant Junbo with hearing loss due to chronic suppurative OM and otorrhea. This develops from acute OM that arises spontaneously in the postnatal period, with the age of onset and early severity dependent on the microbiological status of the mice and their air quality. We have identified the causal mutation, a missense change in the C-terminal zinc finger region of the transcription factor Evi1. This protein is expressed in middle ear basal epithelial cells, fibroblasts, and neutrophil leukocytes at postnatal day 13 and 21 when inflammatory changes are underway. The identification and characterization of the Junbo mutant elaborates a novel role for Evi1 in mammalian disease and implicates a new pathway in genetic predisposition to OM.


Assuntos
Proteínas de Ligação a DNA/genética , Predisposição Genética para Doença/genética , Mutação/genética , Otite Média/genética , Proto-Oncogenes/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Animais , Mapeamento Cromossômico , Clonagem Molecular , Análise Mutacional de DNA , Proteínas de Ligação a DNA/química , Orelha Média/citologia , Orelha Média/patologia , Citometria de Fluxo , Granulócitos/imunologia , Pulmão/citologia , Pulmão/patologia , Proteína do Locus do Complexo MDS1 e EVI1 , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Mutantes , Dados de Sequência Molecular , Nariz/citologia , Nariz/patologia , Otite Média/imunologia , Fenótipo , Organismos Livres de Patógenos Específicos , Fatores de Transcrição/química
8.
J Pharmacol Toxicol Methods ; 98: 106579, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31085319

RESUMO

This meeting report is based on presentations given at the first Drug Safety Africa Meeting in Potchefstroom, South Africa from November 20-22, 2018 at the North-West University campus. There were 134 attendees (including 26 speakers and 34 students) from the pharmaceutical industry, academia, regulatory agencies as well as 6 exhibitors. These meeting proceedings are designed to inform the content that was presented in terms of Safety Pharmacology (SP) and Toxicology methods and models that are used by the pharmaceutical industry to characterize the safety profile of novel small chemical or biological molecules. The first part of this report includes an overview of the core battery studies defined by cardiovascular, central nervous system (CNS) and respiratory studies. Approaches to evaluating drug effects on the renal and gastrointestinal systems and murine phenotyping were also discussed. Subsequently, toxicological approaches were presented including standard strategies and options for early identification and characterization of risks associated with a novel therapeutic, the types of toxicology studies conducted and relevance to risk assessment supporting first-in-human (FIH) clinical trials and target organ toxicity. Biopharmaceutical development and principles of immunotoxicology were discussed as well as emerging technologies. An additional poster session was held that included 18 posters on advanced studies and topics by South African researchers, postgraduate students and postdoctoral fellows.


Assuntos
Produtos Biológicos/toxicidade , Indústria Farmacêutica/métodos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/prevenção & controle , Medição de Risco/métodos , Animais , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Farmacologia/métodos , África do Sul , Toxicologia/métodos
9.
J Bone Miner Res ; 34(3): 497-507, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30395686

RESUMO

Renal calcification (RCALC) resulting in nephrolithiasis and nephrocalcinosis, which affects ∼10% of adults by 70 years of age, involves environmental and genetic etiologies. Thus, nephrolithiasis and nephrocalcinosis occurs as an inherited disorder in ∼65% of patients, and may be associated with endocrine and metabolic disorders including: primary hyperparathyroidism, hypercalciuria, renal tubular acidosis, cystinuria, and hyperoxaluria. Investigations of families with nephrolithiasis and nephrocalcinosis have identified some causative genes, but further progress is limited as large families are unavailable for genetic studies. We therefore embarked on establishing mouse models for hereditary nephrolithiasis and nephrocalcinosis by performing abdominal X-rays to identify renal opacities in N-ethyl-N-nitrosourea (ENU)-mutagenized mice. This identified a mouse with RCALC inherited as an autosomal dominant trait, designated RCALC type 2 (RCALC2). Genomewide mapping located the Rcalc2 locus to a ∼16-Mbp region on chromosome 11D-E2 and whole-exome sequence analysis identified a heterozygous mutation in the DNA polymerase gamma-2, accessory subunit (Polg2) resulting in a nonsense mutation, Tyr265Stop (Y265X), which co-segregated with RCALC2. Kidneys of mutant mice (Polg2+/Y265X ) had lower POLG2 mRNA and protein expression, compared to wild-type littermates (Polg2+/+ ). The Polg2+/Y265X and Polg2+/+ mice had similar plasma concentrations of sodium, potassium, calcium, phosphate, chloride, urea, creatinine, glucose, and alkaline phosphatase activity; and similar urinary fractional excretion of calcium, phosphate, oxalate, and protein. Polg2 encodes the minor subunit of the mitochondrial DNA (mtDNA) polymerase and the mtDNA content in Polg2+/Y265X kidneys was reduced compared to Polg2+/+ mice, and cDNA expression profiling revealed differential expression of 26 genes involved in several biological processes including mitochondrial DNA function, apoptosis, and ubiquitination, the complement pathway, and inflammatory pathways. In addition, plasma of Polg2+/Y265X mice, compared to Polg2+/+ littermates had higher levels of reactive oxygen species. Thus, our studies have identified a mutant mouse model for inherited renal calcification associated with a Polg2 nonsense mutation. © 2018 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals, Inc.


Assuntos
Calcinose , Códon de Terminação , DNA Polimerase gama , Etilnitrosoureia/toxicidade , Nefropatias , Rim , Animais , Calcinose/genética , Calcinose/metabolismo , Calcinose/patologia , DNA Polimerase gama/genética , DNA Polimerase gama/metabolismo , Rim/metabolismo , Rim/patologia , Nefropatias/genética , Nefropatias/metabolismo , Nefropatias/patologia , Camundongos , Camundongos Mutantes
10.
J Bone Miner Res ; 34(7): 1324-1335, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30830987

RESUMO

Nephrolithiasis (NL) and nephrocalcinosis (NC), which comprise renal calcification of the collecting system and parenchyma, respectively, have a multifactorial etiology with environmental and genetic determinants and affect ∼10% of adults by age 70 years. Studies of families with hereditary NL and NC have identified >30 causative genes that have increased our understanding of extracellular calcium homeostasis and renal tubular transport of calcium. However, these account for <20% of the likely genes that are involved, and to identify novel genes for renal calcification disorders, we investigated 1745 12-month-old progeny from a male mouse that had been treated with the chemical mutagen N-ethyl-N-nitrosourea (ENU) for radiological renal opacities. This identified a male mouse with renal calcification that was inherited as an autosomal dominant trait with >80% penetrance in 152 progeny. The calcification consisted of calcium phosphate deposits in the renal papillae and was associated with the presence of the urinary macromolecules osteopontin and Tamm-Horsfall protein, which are features found in Randall's plaques of patients with NC. Genome-wide mapping located the disease locus to a ∼30 Mbp region on chromosome 17A3.3-B3 and whole-exome sequence analysis identified a heterozygous mutation, resulting in a missense substitution (Met149Thr, M149T), in the bromodomain-containing protein 4 (BRD4). The mutant heterozygous (Brd4+/M149T ) mice, when compared with wild-type (Brd4+/+ ) mice, were normocalcemic and normophosphatemic, with normal urinary excretions of calcium and phosphate, and had normal bone turnover markers. BRD4 plays a critical role in histone modification and gene transcription, and cDNA expression profiling, using kidneys from Brd4+/M149T and Brd4+/+ mice, revealed differential expression of genes involved in vitamin D metabolism, cell differentiation, and apoptosis. Kidneys from Brd4+/M149T mice also had increased apoptosis at sites of calcification within the renal papillae. Thus, our studies have established a mouse model, due to a Brd4 Met149Thr mutation, for inherited NC. © 2019 American Society for Bone and Mineral Research.


Assuntos
Mutação de Sentido Incorreto/genética , Nefrocalcinose/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Animais , Apoptose/genética , Segregação de Cromossomos/genética , Cromossomos de Mamíferos/genética , Modelos Animais de Doenças , Feminino , Loci Gênicos , Rim/patologia , Masculino , Camundongos , Nefrocalcinose/urina , Proteínas Nucleares/química , Fenótipo , Fatores de Transcrição/química , Transcrição Gênica , Sequenciamento do Exoma
11.
J Bone Miner Res ; 22(9): 1397-407, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17539739

RESUMO

UNLABELLED: Deactivating mutations in the TNSALP gene cause HPP. Akp2(-/-) mice model severe infantile HPP, but there is no model for the relatively mild adult form. Here we report on mice with an induced mutation in Akp2 that affects splicing. The phenotype of homozygotes mirror aspects of the adult form of HPP. INTRODUCTION: Hypophosphatasia (HPP) is a clinically varied skeletal disorder resulting from deficiency of tissue nonspecific alkaline phosphatase (TNSALP). Mice lacking Akp2 model infantile HPP characterized by skeletal hypomineralization, impaired growth, seizures, and perinatal mortality. No animal model exists to study the less severe forms of the disease that typically present in later life. MATERIALS AND METHODS: N-ethyl-N-nitrosourea (ENU) mutagenesis was used to generate mouse models of human disease. A mouse with low plasma alkaline phosphatase (ALP) activity was identified by our clinical chemistry screen. Its offspring were used for inheritance studies and subjected to biochemical, histological, and radiological phenotyping. DNA was extracted for mapping and osteoblasts harvested for functional studies. RESULTS: We showed semidominant inheritance of the low ALP phenotype and mapped the underlying point mutation to Akp2. Affected offspring bear the splice site mutation 862 + 5G>A-a hypomorphic allele named Akp2(Hpp). The same mutation has been reported in a patient. Akp2(Hpp/+) mice have approximately 50% of normal plasma ALP but display no other biochemical or skeletal abnormalities. Unlike Akp2(-/-) mice, Akp2(Hpp/Hpp) mice have normal initial skeletal development and growth, a normal lifespan and do not have seizures. TNSALP is low but detectable in Akp2(Hpp/Hpp) plasma. Osteoblasts display approximately 10% of normal ALP activity and reduced intracellular inorganic phosphate levels, yet are capable of normal mineralization in vitro. TNSALP substrates are significantly elevated in urine (inorganic pyrophosphate and phosphoethanolamine) and plasma (pyridoxal 5'-phosphate), whereas plasma inorganic pyrophosphate levels are normal. Akp2(Hpp/Hpp) mice develop late-onset skeletal disease, notably defective endochondral ossification and bone mineralization that leads to arthropathies of knees and shoulders. CONCLUSIONS: Akp2(Hpp/Hpp) mice mirror a number of clinical features of the human adult form of HPP. These mice provide for the first time an animal model of late onset HPP that will be valuable in future mechanistic studies and for the evaluation of therapies such as those aimed at HPP.


Assuntos
Fosfatase Alcalina/genética , Modelos Animais de Doenças , Genes Dominantes , Hipofosfatasia/genética , Mutação , Splicing de RNA , Animais , Sequência de Bases , DNA Complementar , Camundongos , Microscopia Eletrônica de Varredura , Dados de Sequência Molecular , Fenótipo
12.
JBMR Plus ; 1(1): 3-15, 2017 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-29479578

RESUMO

The adaptor protein-2 sigma subunit (AP2σ), encoded by AP2S1, forms a heterotetrameric complex, with AP2α, AP2ß, and AP2µ subunits, that is pivotal for clathrin-mediated endocytosis, and AP2σ loss-of-function mutations impair internalization of the calcium-sensing receptor (CaSR), a G-protein-coupled receptor, and cause familial hypocalciuric hypercalcemia type-3 (FHH3). Mice with AP2σ mutations that would facilitate investigations of the in vivo role of AP2σ, are not available, and we therefore embarked on establishing such mice. We screened >10,000 mice treated with the mutagen N-ethyl-N-nitrosourea (ENU) for Ap2s1 mutations and identified 5 Ap2s1 variants, comprising 2 missense (Tyr20Asn and Ile123Asn) and 3 intronic base substitutions, one of which altered the invariant donor splice site dinucleotide gt to gc. Three-dimensional modeling and cellular expression of the missense Ap2s1 variants did not reveal them to alter AP2σ structure or CaSR-mediated signaling, but investigation of the donor splice site variant revealed it to result in an in-frame deletion of 17 evolutionarily conserved amino acids (del17) that formed part of the AP2σ α1-helix, α1-ß3 loop, and ß3 strand. Heterozygous mutant mice (Ap2s1+/del17 ) were therefore established, and these had AP2σ haplosufficiency but were viable with normal appearance and growth. Ap2s1+/del17 mice, when compared with Ap2s1+/+ mice, also had normal plasma concentrations of calcium, phosphate, magnesium, creatinine, urea, sodium, potassium, and alkaline phosphatase activity; normal urinary fractional excretion of calcium, phosphate, sodium, and potassium; and normal plasma parathyroid hormone (PTH) and 1,25-dihydroxyvitamin D (1,25(OH)2) concentrations. However, homozygous Ap2s1del17/del17 mice were non-viable and died between embryonic days 3.5 and 9.5 (E3.5-9.5), thereby indicating that AP2σ likely has important roles at the embryonic patterning stages and organogenesis of the heart, thyroid, liver, gut, lungs, pancreas, and neural systems. Thus, our studies have established a mutant mouse model that is haplosufficient for AP2σ.

13.
Dis Model Mech ; 10(6): 773-786, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28325753

RESUMO

Renal fibrosis is a common feature of renal failure resulting from multiple etiologies, including diabetic nephropathy, hypertension and inherited renal disorders. However, the mechanisms of renal fibrosis are incompletely understood and we therefore explored these by establishing a mouse model for a renal tubular disorder, referred to as autosomal dominant tubulointerstitial kidney disease (ADTKD) due to missense uromodulin (UMOD) mutations (ADTKD-UMOD). ADTKD-UMOD, which is associated with retention of mutant uromodulin in the endoplasmic reticulum (ER) of renal thick ascending limb cells, is characterized by hyperuricemia, interstitial fibrosis, inflammation and renal failure, and we used targeted homologous recombination to generate a knock-in mouse model with an ADTKD-causing missense cysteine to arginine uromodulin mutation (C125R). Heterozygous and homozygous mutant mice developed reduced uric acid excretion, renal fibrosis, immune cell infiltration and progressive renal failure, with decreased maturation and excretion of uromodulin, due to its retention in the ER. The ER stress marker 78 kDa glucose-regulated protein (GRP78) was elevated in cells expressing mutant uromodulin in heterozygous and homozygous mutant mice, and this was accompanied, both in vivo and ex vivo, by upregulation of two unfolded protein response pathways in primary thick ascending limb cells from homozygous mutant mice. However, this did not lead to an increase in apoptosis in vivo Thus, we have developed a novel mouse model for renal fibrosis, which will be a valuable resource to decipher the mechanisms linking uromodulin mutations with ER stress and renal fibrosis.


Assuntos
Estresse do Retículo Endoplasmático , Padrões de Herança/genética , Nefropatias/patologia , Rim/patologia , Animais , Modelos Animais de Doenças , Chaperona BiP do Retículo Endoplasmático , Fibrose , Células Germinativas/metabolismo , Inflamação/patologia , Nefropatias/sangue , Nefropatias/urina , Camundongos , Mutação/genética , Fator de Transcrição CHOP/metabolismo , Resposta a Proteínas não Dobradas , Regulação para Cima , Uromodulina/metabolismo
14.
JCI Insight ; 2(20)2017 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-29046478

RESUMO

Loss-of-function mutations of GNA11, which encodes G-protein subunit α11 (Gα11), a signaling partner for the calcium-sensing receptor (CaSR), result in familial hypocalciuric hypercalcemia type 2 (FHH2). FHH2 is characterized by hypercalcemia, inappropriately normal or raised parathyroid hormone (PTH) concentrations, and normal or low urinary calcium excretion. A mouse model for FHH2 that would facilitate investigations of the in vivo role of Gα11 and the evaluation of calcimimetic drugs, which are CaSR allosteric activators, is not available. We therefore screened DNA from > 10,000 mice treated with the chemical mutagen N-ethyl-N-nitrosourea (ENU) for GNA11 mutations and identified a Gα11 variant, Asp195Gly (D195G), which downregulated CaSR-mediated intracellular calcium signaling in vitro, consistent with it being a loss-of-function mutation. Treatment with the calcimimetic cinacalcet rectified these signaling responses. In vivo studies showed mutant heterozygous (Gna11+/195G) and homozygous (Gna11195G/195G) mice to be hypercalcemic with normal or increased plasma PTH concentrations and normal urinary calcium excretion. Cinacalcet (30mg/kg orally) significantly reduced plasma albumin-adjusted calcium and PTH concentrations in Gna11+/195G and Gna11195G/195G mice. Thus, our studies have established a mouse model with a germline loss-of-function Gα11 mutation that is representative for FHH2 in humans and demonstrated that cinacalcet can correct the associated abnormalities of plasma calcium and PTH.


Assuntos
Cinacalcete/uso terapêutico , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/efeitos dos fármacos , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Hipercalcemia/tratamento farmacológico , Mutação/efeitos dos fármacos , Administração Oral , Animais , Cálcio/sangue , Cálcio/urina , Cinacalcete/administração & dosagem , Modelos Animais de Doenças , Etilnitrosoureia/farmacologia , Feminino , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/química , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Modelos Moleculares , Hormônio Paratireóideo/sangue , Hormônio Paratireóideo/metabolismo , Receptores de Detecção de Cálcio/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Albumina Sérica , Transdução de Sinais
15.
JCI Insight ; 2(3): e91103, 2017 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-28194447

RESUMO

Heterozygous germline gain-of-function mutations of G-protein subunit α11 (Gα11), a signaling partner for the calcium-sensing receptor (CaSR), result in autosomal dominant hypocalcemia type 2 (ADH2). ADH2 may cause symptomatic hypocalcemia with low circulating parathyroid hormone (PTH) concentrations. Effective therapies for ADH2 are currently not available, and a mouse model for ADH2 would help in assessment of potential therapies. We hypothesized that a previously reported dark skin mouse mutant (Dsk7) - which has a germline hypermorphic Gα11 mutation, Ile62Val - may be a model for ADH2 and allow evaluation of calcilytics, which are CaSR negative allosteric modulators, as a targeted therapy for this disorder. Mutant Dsk7/+ and Dsk7/Dsk7 mice were shown to have hypocalcemia and reduced plasma PTH concentrations, similar to ADH2 patients. In vitro studies showed the mutant Val62 Gα11 to upregulate CaSR-mediated intracellular calcium and MAPK signaling, consistent with a gain of function. Treatment with NPS-2143, a calcilytic compound, normalized these signaling responses. In vivo, NPS-2143 induced a rapid and marked rise in plasma PTH and calcium concentrations in Dsk7/Dsk7 and Dsk7/+ mice, which became normocalcemic. Thus, these studies have established Dsk7 mice, which harbor a germline gain-of-function Gα11 mutation, as a model for ADH2 and have demonstrated calcilytics as a potential targeted therapy.


Assuntos
Subunidades alfa de Proteínas de Ligação ao GTP/genética , Hipercalciúria/tratamento farmacológico , Hipocalcemia/tratamento farmacológico , Hipoparatireoidismo/congênito , Mutação , Naftalenos/administração & dosagem , Receptores Acoplados a Proteínas G/metabolismo , Animais , Cálcio/sangue , Modelos Animais de Doenças , Células HEK293 , Humanos , Hipercalciúria/genética , Hipercalciúria/metabolismo , Hipocalcemia/genética , Hipocalcemia/metabolismo , Hipoparatireoidismo/tratamento farmacológico , Hipoparatireoidismo/genética , Hipoparatireoidismo/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Naftalenos/farmacologia , Hormônio Paratireóideo/sangue , Receptores de Detecção de Cálcio
16.
Endocrinology ; 158(8): 2486-2502, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28575322

RESUMO

The calcium-sensing receptor (CaSR) is a family C G-protein-coupled receptor that plays a pivotal role in extracellular calcium homeostasis. The CaSR is also highly expressed in pancreatic islet α- and ß-cells that secrete glucagon and insulin, respectively. To determine whether the CaSR may influence systemic glucose homeostasis, we characterized a mouse model with a germline gain-of-function CaSR mutation, Leu723Gln, referred to as Nuclear flecks (Nuf). Heterozygous- (CasrNuf/+) and homozygous-affected (CasrNuf/Nuf) mice were shown to have hypocalcemia in association with impaired glucose tolerance and insulin secretion. Oral administration of a CaSR antagonist compound, known as a calcilytic, rectified the glucose intolerance and hypoinsulinemia of CasrNuf/+ mice and ameliorated glucose intolerance in CasrNuf/Nuf mice. Ex vivo studies showed CasrNuf/+ and CasrNuf/Nuf mice to have reduced pancreatic islet mass and ß-cell proliferation. Electrophysiological analysis of isolated CasrNuf/Nuf islets showed CaSR activation to increase the basal electrical activity of ß-cells independently of effects on the activity of the adenosine triphosphate (ATP)-sensitive K+ (KATP) channel. CasrNuf/Nuf mice also had impaired glucose-mediated suppression of glucagon secretion, which was associated with increased numbers of α-cells and a higher α-cell proliferation rate. Moreover, CasrNuf/Nuf islet electrophysiology demonstrated an impairment of α-cell membrane depolarization in association with attenuated α-cell basal KATP channel activity. These studies indicate that the CaSR activation impairs glucose tolerance by a combination of α- and ß-cell defects and also influences pancreatic islet mass. Moreover, our findings highlight a potential application of targeted CaSR compounds for modulating glucose metabolism.


Assuntos
Hiperglicemia/tratamento farmacológico , Hiperglicemia/genética , Indanos/farmacologia , Fenilpropionatos/farmacologia , Receptores de Detecção de Cálcio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Composição Corporal , Cálcio/metabolismo , Proliferação de Células , Intolerância à Glucose , Células HEK293 , Humanos , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/fisiologia , Camundongos , Camundongos Knockout , Mutação , Receptores de Detecção de Cálcio/antagonistas & inibidores , Receptores de Detecção de Cálcio/genética , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/genética
17.
Biol Open ; 4(11): 1367-75, 2015 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-26432886

RESUMO

Tryptophan metabolites have been linked in observational studies with type 2 diabetes, cognitive disorders, inflammation and immune system regulation. A rate-limiting enzyme in tryptophan conversion is arylformamidase (Afmid), and a double knockout of this gene and thymidine kinase (Tk) has been reported to cause renal failure and abnormal immune system regulation. In order to further investigate possible links between abnormal tryptophan catabolism and diabetes and to examine the effect of single Afmid knockout, we have carried out metabolic phenotyping of an exon 2 Afmid gene knockout. These mice exhibit impaired glucose tolerance, although their insulin sensitivity is unchanged in comparison to wild-type animals. This phenotype results from a defect in glucose stimulated insulin secretion and these mice show reduced islet mass with age. No evidence of a renal phenotype was found, suggesting that this published phenotype resulted from loss of Tk expression in the double knockout. However, despite specifically removing only exon 2 of Afmid in our experiments we also observed some reduction of Tk expression, possibly due to a regulatory element in this region. In summary, our findings support a link between abnormal tryptophan metabolism and diabetes and highlight beta cell function for further mechanistic analysis.

18.
Endocrinology ; 156(9): 3114-21, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26052899

RESUMO

Autosomal dominant hypocalcemia type 1 (ADH1) is caused by germline gain-of-function mutations of the calcium-sensing receptor (CaSR) and may lead to symptomatic hypocalcemia, inappropriately low serum PTH concentrations and hypercalciuria. Negative allosteric CaSR modulators, known as calcilytics, have been shown to normalize the gain-of-function associated with ADH-causing CaSR mutations in vitro and represent a potential targeted therapy for ADH1. However, the effectiveness of calcilytic drugs for the treatment of ADH1-associated hypocalcemia remains to be established. We have investigated NPS 2143, a calcilytic compound, for the treatment of ADH1 by in vitro and in vivo studies involving a mouse model, known as Nuf, which harbors a gain-of-function CaSR mutation, Leu723Gln. Wild-type (Leu723) and Nuf mutant (Gln723) CaSRs were expressed in HEK293 cells, and the effect of NPS 2143 on their intracellular calcium responses was determined by flow cytometry. NPS 2143 was also administered as a single ip bolus to wild-type and Nuf mice and plasma concentrations of calcium and PTH, and urinary calcium excretion measured. In vitro administration of NPS 2143 decreased the intracellular calcium responses of HEK293 cells expressing the mutant Gln723 CaSR in a dose-dependent manner, thereby rectifying the gain-of-function associated with the Nuf mouse CaSR mutation. Intraperitoneal injection of NPS 2143 in Nuf mice led to significant increases in plasma calcium and PTH without elevating urinary calcium excretion. These studies of a mouse model with an activating CaSR mutation demonstrate NPS 2143 to normalize the gain-of-function causing ADH1 and improve the hypocalcemia associated with this disorder.


Assuntos
Hipercalcemia/congênito , Naftalenos/uso terapêutico , Receptores Acoplados a Proteínas G/genética , Animais , Modelos Animais de Doenças , Feminino , Células HEK293 , Humanos , Hipercalcemia/tratamento farmacológico , Hipercalcemia/genética , Masculino , Camundongos , Mutação , Receptores de Detecção de Cálcio
19.
PLoS One ; 10(4): e0121829, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25830347

RESUMO

In 2007, a genome wide association study identified a SNP in intron one of the gene encoding human FTO that was associated with increased body mass index. Homozygous risk allele carriers are on average three kg heavier than those homozygous for the protective allele. FTO is a DNA/RNA demethylase, however, how this function affects body weight, if at all, is unknown. Here we aimed to pharmacologically inhibit FTO to examine the effect of its demethylase function in vitro and in vivo as a first step in evaluating the therapeutic potential of FTO. We showed that IOX3, a known inhibitor of the HIF prolyl hydroxylases, decreased protein expression of FTO (in C2C12 cells) and reduced maximal respiration rate in vitro. However, FTO protein levels were not significantly altered by treatment of mice with IOX3 at 60 mg/kg every two days. This treatment did not affect body weight, or RER, but did significantly reduce bone mineral density and content and alter adipose tissue distribution. Future compounds designed to selectively inhibit FTO's demethylase activity could be therapeutically useful for the treatment of obesity.


Assuntos
Fármacos Antiobesidade/farmacologia , Glicina/análogos & derivados , Isoquinolinas/farmacologia , Oxigenases de Função Mista/antagonistas & inibidores , Obesidade/tratamento farmacológico , Oxo-Ácido-Liases/antagonistas & inibidores , Dioxigenase FTO Dependente de alfa-Cetoglutarato , Animais , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos , Glicina/farmacologia , Concentração Inibidora 50 , Masculino , Camundongos Endogâmicos C57BL , Oxigenases de Função Mista/metabolismo , Obesidade/metabolismo , Oxo-Ácido-Liases/metabolismo
20.
Endocrinology ; 155(3): 908-22, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24302625

RESUMO

Cushing's syndrome, which is characterized by excessive circulating glucocorticoid concentrations, may be due to ACTH-dependent or -independent causes that include anterior pituitary and adrenal cortical tumors, respectively. ACTH secretion is stimulated by CRH, and we report a mouse model for Cushing's syndrome due to an N-ethyl-N-nitrosourea (ENU) induced Crh mutation at -120 bp of the promoter region, which significantly increased luciferase reporter activity and was thus a gain-of-function mutation. Crh(-120/+) mice, when compared with wild-type littermates, had obesity, muscle wasting, thin skin, hair loss, and elevated plasma and urinary concentrations of corticosterone. In addition, Crh(-120/+) mice had hyperglycemia, hyperfructosaminemia, hyperinsulinemia, hypercholesterolemia, hypertriglyceridemia, and hyperleptinemia but normal adiponectin. Crh(-120/+) mice also had low bone mineral density, hypercalcemia, hypercalciuria, and decreased concentrations of plasma PTH and osteocalcin. Bone histomorphometry revealed Crh(-120/+) mice to have significant reductions in mineralizing surface area, mineral apposition, bone formation rates, osteoblast number, and the percentage of corticoendosteal bone covered by osteoblasts, which was accompanied by an increase in adipocytes in the bone marrow. Thus, a mouse model for Cushing's syndrome has been established, and this will help in further elucidating the pathophysiological effects of glucocorticoid excess and in evaluating treatments for corticosteroid-induced osteoporosis.


Assuntos
Hormônio Liberador da Corticotropina/genética , Etilnitrosoureia/química , Glucocorticoides/metabolismo , Mutação , Regiões Promotoras Genéticas , Animais , Composição Corporal , Osso e Ossos/metabolismo , Cálcio/metabolismo , Linhagem Celular , Mapeamento Cromossômico , Corticosterona/metabolismo , Síndrome de Cushing/genética , Modelos Animais de Doenças , Feminino , Metabolismo dos Lipídeos , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Osteoblastos/metabolismo , Osteoporose/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa