Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39078990

RESUMO

CONTEXT: Hyperinsulinemic hypoglycemia (HI) can be the presenting feature of Kabuki syndrome (KS), which is caused by loss-of-function variants in KMT2D or KDM6A. As these genes play a critical role in maintaining methylation status in chromatin, individuals with pathogenic variants have a disease-specific epigenomic profile -an episignature. OBJECTIVE: We evaluated the pathogenicity of three novel partial KDM6A duplications identified in three individuals presenting with neonatal-onset HI without typical features of KS at the time of genetic testing. METHODS: Three different partial KDM6A duplications were identified by routine targeted next generation sequencing for HI and initially classified as variants of uncertain significance (VUS) as their location, and hence their impact on the gene, was not known. Whole genome sequencing (WGS) was undertaken to map the breakpoints of the duplications with DNA methylation profiling performed in two individuals to investigate the presence of a KS-specific episignature. RESULTS: WGS confirmed the duplication in proband 1 as pathogenic as it caused a frameshift in the normal copy of the gene leading to a premature termination codon. The duplications identified in probands 2 and 3 did not alter the reading frame and therefore their significance remained uncertain after WGS. Subsequent DNA methylation profiling identified a KS-specific episignature in proband 2 but not in proband 3. CONCLUSIONS: Our findings confirm a role for KDM6A partial gene duplications in the etiology of KS and highlight the importance of performing in-depth molecular genetic analysis to properly assess the clinical significance of VUS's in the KDM6A gene.

2.
Eur J Hum Genet ; 32(7): 813-818, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38605124

RESUMO

Persistent congenital hyperinsulinism (HI) is a rare genetically heterogeneous condition characterised by dysregulated insulin secretion leading to life-threatening hypoglycaemia. For up to 50% of affected individuals screening of the known HI genes does not identify a disease-causing variant. Large deletions have previously been used to identify novel regulatory regions causing HI. Here, we used genome sequencing to search for novel large (>1 Mb) deletions in 180 probands with HI of unknown cause and replicated our findings in a large cohort of 883 genetically unsolved individuals with HI using off-target copy number variant calling from targeted gene panels. We identified overlapping heterozygous deletions in five individuals (range 3-8 Mb) spanning chromosome 20p11.2. The pancreatic beta-cell transcription factor gene, FOXA2, a known cause of HI was deleted in two of the five individuals. In the remaining three, we found a minimal deleted region of 2.4 Mb adjacent to FOXA2 that encompasses multiple non-coding regulatory elements that are in conformational contact with FOXA2. Our data suggests that the deletions in these three children may cause disease through the dysregulation of FOXA2 expression. These findings provide new insights into the regulation of FOXA2 in the beta-cell and confirm an aetiological role for chromosome 20p11.2 deletions in syndromic HI.


Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 20 , Hiperinsulinismo Congênito , Fator 3-beta Nuclear de Hepatócito , Humanos , Fator 3-beta Nuclear de Hepatócito/genética , Fator 3-beta Nuclear de Hepatócito/metabolismo , Hiperinsulinismo Congênito/genética , Hiperinsulinismo Congênito/patologia , Cromossomos Humanos Par 20/genética , Feminino , Masculino , Sequências Reguladoras de Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa