Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
1.
Cell ; 187(8): 1874-1888.e14, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38518773

RESUMO

Infections of the lung cause observable sickness thought to be secondary to inflammation. Signs of sickness are crucial to alert others via behavioral-immune responses to limit contact with contagious individuals. Gram-negative bacteria produce exopolysaccharide (EPS) that provides microbial protection; however, the impact of EPS on sickness remains uncertain. Using genome-engineered Pseudomonas aeruginosa (P. aeruginosa) strains, we compared EPS-producers versus non-producers and a virulent Escherichia coli (E. coli) lung infection model in male and female mice. EPS-negative P. aeruginosa and virulent E. coli infection caused severe sickness, behavioral alterations, inflammation, and hypothermia mediated by TLR4 detection of the exposed lipopolysaccharide (LPS) in lung TRPV1+ sensory neurons. However, inflammation did not account for sickness. Stimulation of lung nociceptors induced acute stress responses in the paraventricular hypothalamic nuclei by activating corticotropin-releasing hormone neurons responsible for sickness behavior and hypothermia. Thus, EPS-producing biofilm pathogens evade initiating a lung-brain sensory neuronal response that results in sickness.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Pulmão , Polissacarídeos Bacterianos , Infecções por Pseudomonas , Pseudomonas aeruginosa , Animais , Feminino , Masculino , Camundongos , Biofilmes , Escherichia coli/fisiologia , Hipotermia/metabolismo , Hipotermia/patologia , Inflamação/metabolismo , Inflamação/patologia , Pulmão/microbiologia , Pulmão/patologia , Pneumonia/microbiologia , Pneumonia/patologia , Pseudomonas aeruginosa/fisiologia , Células Receptoras Sensoriais , Polissacarídeos Bacterianos/metabolismo , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/patologia , Infecções por Pseudomonas/metabolismo , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/patologia , Nociceptores/metabolismo
2.
Mol Cell ; 81(3): 571-583.e6, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33412111

RESUMO

The arms race between bacteria and phages has led to the evolution of diverse anti-phage defenses, several of which are controlled by quorum-sensing pathways. In this work, we characterize a quorum-sensing anti-activator protein, Aqs1, found in Pseudomonas phage DMS3. We show that Aqs1 inhibits LasR, the master regulator of quorum sensing, and present the crystal structure of the Aqs1-LasR complex. The 69-residue Aqs1 protein also inhibits PilB, the type IV pilus assembly ATPase protein, which blocks superinfection by phages that require the pilus for infection. This study highlights the remarkable ability of small phage proteins to bind multiple host proteins and disrupt key biological pathways. As quorum sensing influences various anti-phage defenses, Aqs1 provides a mechanism by which infecting phages might simultaneously dampen multiple defenses. Because quorum-sensing systems are broadly distributed across bacteria, this mechanism of phage counter-defense may play an important role in phage-host evolutionary dynamics.


Assuntos
Proteínas de Bactérias/metabolismo , Bacteriófagos/metabolismo , Pseudomonas aeruginosa/metabolismo , Percepção de Quorum , Transativadores/metabolismo , Proteínas Virais/metabolismo , Proteínas de Bactérias/genética , Bacteriófagos/genética , Bacteriófagos/patogenicidade , Fímbrias Bacterianas/metabolismo , Interações Hospedeiro-Patógeno , Oxirredutases/genética , Oxirredutases/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crescimento & desenvolvimento , Piocianina/metabolismo , Transativadores/genética , Proteínas Virais/genética
3.
PLoS Pathog ; 20(6): e1012315, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38889192

RESUMO

Invasive aspergillosis causes significant morbidity and mortality in immunocompromised patients. Natural killer (NK) cells are pivotal for antifungal defense. Thus far, CD56 is the only known pathogen recognition receptor on NK cells triggering potent antifungal activity against Aspergillus fumigatus. However, the underlying cellular mechanisms and the fungal ligand of CD56 have remained unknown. Using purified cell wall components, biochemical treatments, and ger mutants with altered cell wall composition, we herein found that CD56 interacts with the A. fumigatus cell wall carbohydrate galactosaminogalactan (GAG). This interaction induced NK-cell activation, degranulation, and secretion of immune-enhancing chemokines and cytotoxic effectors. Supernatants from GAG-stimulated NK cells elicited antifungal activity and enhanced antifungal effector responses of polymorphonuclear cells. In conclusion, we identified A. fumigatus GAG as a ligand of CD56 on human primary NK cells, stimulating potent antifungal effector responses and activating other immune cells.


Assuntos
Aspergilose , Aspergillus fumigatus , Antígeno CD56 , Células Matadoras Naturais , Humanos , Aspergillus fumigatus/imunologia , Células Matadoras Naturais/imunologia , Antígeno CD56/metabolismo , Antígeno CD56/imunologia , Aspergilose/imunologia , Aspergilose/microbiologia , Ativação Linfocitária/imunologia , Polissacarídeos/metabolismo , Polissacarídeos/imunologia , Parede Celular/imunologia , Parede Celular/metabolismo
4.
Proc Natl Acad Sci U S A ; 120(40): e2307093120, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37751552

RESUMO

Energy conversion by electron transport chains occurs through the sequential transfer of electrons between protein complexes and intermediate electron carriers, creating the proton motive force that enables ATP synthesis and membrane transport. These protein complexes can also form higher order assemblies known as respiratory supercomplexes (SCs). The electron transport chain of the opportunistic pathogen Pseudomonas aeruginosa is closely linked with its ability to invade host tissue, tolerate harsh conditions, and resist antibiotics but is poorly characterized. Here, we determine the structure of a P. aeruginosa SC that forms between the quinol:cytochrome c oxidoreductase (cytochrome bc1) and one of the organism's terminal oxidases, cytochrome cbb3, which is found only in some bacteria. Remarkably, the SC structure also includes two intermediate electron carriers: a diheme cytochrome c4 and a single heme cytochrome c5. Together, these proteins allow electron transfer from ubiquinol in cytochrome bc1 to oxygen in cytochrome cbb3. We also present evidence that different isoforms of cytochrome cbb3 can participate in formation of this SC without changing the overall SC architecture. Incorporating these different subunit isoforms into the SC would allow the bacterium to adapt to different environmental conditions. Bioinformatic analysis focusing on structural motifs in the SC suggests that cytochrome bc1-cbb3 SCs also exist in other bacterial pathogens.


Assuntos
Citocromos c , Pseudomonas aeruginosa , Transporte de Elétrons , Transporte Biológico , Antibacterianos
5.
J Bacteriol ; 206(2): e0033123, 2024 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-38197635

RESUMO

The Pel exopolysaccharide is one of the most mechanistically conserved and phylogenetically diverse bacterial biofilm matrix determinants. Pel is a major contributor to the structural integrity of Pseudomonas aeruginosa biofilms, and its biosynthesis is regulated by the binding of cyclic-3',5'-dimeric guanosine monophosphate (c-di-GMP) to the PelD receptor. c-di-GMP is synthesized from two molecules of guanosine triphosphate (GTP) by diguanylate cyclases with GGDEF domains and degraded by phosphodiesterases with EAL or HD-GYP domains. As the P. aeruginosa genome encodes 43 c-di-GMP metabolic enzymes, one way signaling specificity can be achieved is through direct interaction between specific enzyme-receptor pairs. Here, we show that the inner membrane hybrid GGDEF-EAL enzyme, BifA, directly interacts with PelD via its cytoplasmic HAMP, GGDEF, and EAL domains. Despite having no catalytic function, the degenerate active site motif of the BifA GGDEF domain (GGDQF) has retained the ability to bind GTP with micromolar affinity. Mutations that abolish GTP binding result in increased biofilm formation but stable global c-di-GMP levels. Our data suggest that BifA forms a dimer in solution and that GTP binding induces conformational changes in dimeric BifA that enhance the BifA-PelD interaction and stimulate its phosphodiesterase activity, thus reducing c-di-GMP levels and downregulating Pel biosynthesis. Structural comparisons between the dimeric AlphaFold2 model of BifA and the structures of other hybrid GGDEF-EAL proteins suggest that the regulation of BifA by GTP may occur through a novel mechanism.IMPORTANCEc-di-GMP is the most common cyclic dinucleotide used by bacteria to regulate phenotypes such as motility, biofilm formation, virulence factor production, cell cycle progression, and cell differentiation. While the identification and initial characterization of c-di-GMP metabolic enzymes are well established, our understanding of how these enzymes are regulated to provide signaling specificity remains understudied. Here we demonstrate that the inactive GGDEF domain of BifA binds GTP and regulates the adjacent phosphodiesterase EAL domain, ultimately downregulating Pel-dependent P. aeruginosa biofilm formation through an interaction with PelD. This discovery adds to the growing body of literature regarding how hybrid GGDEF-EAL enzymes are regulated and provides additional precedence for studying how direct interactions between c-di-GMP metabolic enzymes and effectors result in signaling specificity.


Assuntos
Proteínas de Escherichia coli , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Proteínas de Bactérias/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas de Escherichia coli/metabolismo , GMP Cíclico/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Biofilmes , Regulação Bacteriana da Expressão Gênica
6.
J Biol Chem ; 299(11): 105314, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37797696

RESUMO

Enzymatic modifications of bacterial exopolysaccharides enhance immune evasion and persistence during infection. In the Gram-negative opportunistic pathogen Pseudomonas aeruginosa, acetylation of alginate reduces opsonic killing by phagocytes and improves reactive oxygen species scavenging. Although it is well known that alginate acetylation in P. aeruginosa requires AlgI, AlgJ, AlgF, and AlgX, how these proteins coordinate polymer modification at a molecular level remains unclear. Here, we describe the structural characterization of AlgF and its protein interaction network. We characterize direct interactions between AlgF and both AlgJ and AlgX in vitro and demonstrate an association between AlgF and AlgX, as well as AlgJ and AlgI, in P. aeruginosa. We determine that AlgF does not exhibit acetylesterase activity and is unable to bind to polymannuronate in vitro. Therefore, we propose that AlgF functions to mediate protein-protein interactions between alginate acetylation enzymes, forming the periplasmic AlgJFXK (AlgJ-AlgF-AlgX-AlgK) acetylation and export complex required for robust biofilm formation.


Assuntos
Alginatos , Pseudomonas aeruginosa , Acetilação , Alginatos/química , Proteínas de Bactérias/metabolismo , Biofilmes , Periplasma/metabolismo , Processamento de Proteína Pós-Traducional , Pseudomonas aeruginosa/metabolismo
7.
PLoS Pathog ; 18(8): e1010764, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35969621

RESUMO

Infections and disease caused by the obligate human pathogen Bordetella pertussis (Bp) are increasing, despite widespread vaccinations. The current acellular pertussis vaccines remain ineffective against nasopharyngeal colonization, carriage, and transmission. In this work, we tested the hypothesis that Bordetella polysaccharide (Bps), a member of the poly-ß-1,6-N-acetyl-D-glucosamine (PNAG/PGA) family of polysaccharides promotes respiratory tract colonization of Bp by resisting killing by antimicrobial peptides (AMPs). Genetic deletion of the bpsA-D locus, as well as treatment with the specific glycoside hydrolase Dispersin B, increased susceptibility to AMP-mediated killing. Bps was found to be both cell surface-associated and released during laboratory growth and mouse infections. Addition of bacterial supernatants containing Bps and purified Bps increased B. pertussis resistance to AMPs. By utilizing ELISA, immunoblot and flow cytometry assays, we show that Bps functions as a dual surface shield and decoy. Co-inoculation of C57BL/6J mice with a Bps-proficient strain enhanced respiratory tract survival of the Bps-deficient strain. In combination, the presented results highlight the critical role of Bps as a central driver of B. pertussis pathogenesis. Heterologous production of Bps in a non-pathogenic E. coli K12 strain increased AMP resistance in vitro, and augmented bacterial survival and pathology in the mouse respiratory tract. These studies can serve as a foundation for other PNAG/PGA polysaccharides and for the development of an effective Bp vaccine that includes Bps.


Assuntos
Infecções por Escherichia coli , Coqueluche , Animais , Humanos , Camundongos , Peptídeos Antimicrobianos , Biofilmes , Bordetella pertussis/genética , Escherichia coli , Camundongos Endogâmicos C57BL , Vacina contra Coqueluche , Polissacarídeos
8.
PLoS Pathog ; 18(8): e1010750, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35930610

RESUMO

The synthesis of exopolysaccharides as biofilm matrix components by pathogens is a crucial factor for chronic infections and antibiotic resistance. Many periplasmic proteins involved in polymer processing and secretion in Gram-negative synthase dependent exopolysaccharide biosynthetic systems have been individually characterized. The operons responsible for the production of PNAG, alginate, cellulose and the Pel polysaccharide each contain a gene that encodes an outer membrane associated tetratricopeptide repeat (TPR) domain containing protein. While the TPR domain has been shown to bind other periplasmic proteins, the functional consequences of these interactions for the polymer remain poorly understood. Herein, we show that the C-terminal TPR region of PgaA interacts with the de-N-acetylase domain of PgaB, and increases its deacetylase activity. Additionally, we found that when the two proteins form a complex, the glycoside hydrolase activity of PgaB is also increased. To better understand structure-function relationships we determined the crystal structure of a stable TPR module, which has a conserved groove formed by three repeat motifs. Tryptophan quenching, mass spectrometry analysis and molecular dynamics simulation studies suggest that the crystallized TPR module can bind PNAG/dPNAG via its electronegative groove on the concave surface, and potentially guide the polymer through the periplasm towards the porin for export. Our results suggest a scaffolding role for the TPR domain that combines PNAG/dPNAG translocation with the modulation of its chemical structure by PgaB.


Assuntos
Proteínas Periplásmicas , Repetições de Tetratricopeptídeos , Amidoidrolases/metabolismo , Biofilmes , Proteínas Periplásmicas/metabolismo , Polímeros
9.
J Biol Chem ; 298(2): 101560, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34990713

RESUMO

Pseudomonas aeruginosa is an opportunistic human pathogen and a leading cause of chronic infection in the lungs of individuals with cystic fibrosis. After colonization, P. aeruginosa often undergoes a phenotypic conversion to mucoidy, characterized by overproduction of the alginate exopolysaccharide. This conversion is correlated with poorer patient prognoses. The majority of genes required for alginate synthesis, including the alginate lyase, algL, are located in a single operon. Previous investigations of AlgL have resulted in several divergent hypotheses regarding the protein's role in alginate production. To address these discrepancies, we determined the structure of AlgL and, using multiple sequence alignments, identified key active site residues involved in alginate binding and catalysis. In vitro enzymatic analysis of active site mutants highlights R249 and Y256 as key residues required for alginate lyase activity. In a genetically engineered P. aeruginosa strain where alginate biosynthesis is under arabinose control, we found that AlgL is required for cell viability and maintaining membrane integrity during alginate production. We demonstrate that AlgL functions as a homeostasis enzyme to clear the periplasmic space of accumulated polymer. Constitutive expression of the AlgU/T sigma factor mitigates the effects of an algL deletion during alginate production, suggesting that an AlgU/T-regulated protein or proteins can compensate for an algL deletion. Together, our study demonstrates the role of AlgL in alginate biosynthesis, explains the discrepancies observed previously across other P. aeruginosa ΔalgL genetic backgrounds, and clarifies the existing divergent data regarding the function of AlgL as an alginate degrading enzyme.


Assuntos
Alginatos , Periplasma , Polissacarídeo-Liases , Pseudomonas aeruginosa , Alginatos/química , Alginatos/metabolismo , Proteínas de Bactérias/metabolismo , Ácido Glucurônico/química , Ácido Glucurônico/genética , Ácidos Hexurônicos/química , Homeostase , Humanos , Periplasma/enzimologia , Periplasma/metabolismo , Polímeros/metabolismo , Polissacarídeo-Liases/metabolismo , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/metabolismo
10.
J Bacteriol ; 204(12): e0033522, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36448788

RESUMO

Many bacterial species use the secondary messenger, c-di-GMP, to promote the production of biofilm matrix components. In Pseudomonas aeruginosa, c-di-GMP production is stimulated upon initial surface contact and generally remains high throughout biofilm growth. Transcription of several gene clusters, including the Sia signal transduction system, are induced in response to high cellular levels of c-di-GMP. The output of this system is SiaD, a diguanylate cyclase whose activity is induced in the presence of the detergent SDS. Previous studies demonstrated that Sia-mediated cellular aggregation is a key feature of P. aeruginosa growth in the presence of SDS. Here, we show that the Sia system is important for producing low levels of c-di-GMP when P. aeruginosa is growing planktonically. In addition, we show that Sia activity is important for maintaining cell-associated Psl in planktonic populations. We also demonstrate that Sia mutant strains have reduced cell-associated Psl and a surface attachment-deficient phenotype. The Sia system also appears to posttranslationally impact cell-associated Psl levels. Collectively, our findings suggest a novel role for the Sia system and c-di-GMP in planktonic populations by regulating levels of cell-associated Psl.


Assuntos
Regulação Bacteriana da Expressão Gênica , Pseudomonas aeruginosa , Pseudomonas aeruginosa/metabolismo , GMP Cíclico , Biofilmes , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
11.
Antimicrob Agents Chemother ; 66(8): e0005222, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35862738

RESUMO

The bacterium Pseudomonas aeruginosa can colonize the airways of patients with chronic lung disease. Within the lung, P. aeruginosa forms biofilms that can enhance resistance to antibiotics and immune defenses. P. aeruginosa biofilm formation is dependent on the secretion of matrix exopolysaccharides, including Pel and Psl. In this study, recombinant glycoside hydrolases (GHs) that degrade Pel and Psl were evaluated alone and in combination with antibiotics in a mouse model of P. aeruginosa infection. Intratracheal GH administration was well tolerated by mice. Pharmacokinetic analysis revealed that, although GHs have short half-lives, administration of two GHs in combination resulted in increased GH persistence. Combining GH prophylaxis and treatment with the antibiotic ciprofloxacin resulted in greater reduction in pulmonary bacterial burden than that with either agent alone. This study lays the foundation for further exploration of GH therapy in bacterial infections.


Assuntos
Infecções por Pseudomonas , Animais , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Biofilmes , Glicosídeo Hidrolases/metabolismo , Pulmão/metabolismo , Camundongos , Polissacarídeos Bacterianos/metabolismo , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/metabolismo
12.
PLoS Pathog ; 16(4): e1008281, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32236137

RESUMO

Our understanding of the biofilm matrix components utilized by Gram-positive bacteria, and the signalling pathways that regulate their production are largely unknown. In a companion study, we developed a computational pipeline for the unbiased identification of homologous bacterial operons and applied this algorithm to the analysis of synthase-dependent exopolysaccharide biosynthetic systems. Here, we explore the finding that many species of Gram-positive bacteria have operons with similarity to the Pseudomonas aeruginosa pel locus. Our characterization of the pelDEADAFG operon from Bacillus cereus ATCC 10987, presented herein, demonstrates that this locus is required for biofilm formation and produces a polysaccharide structurally similar to Pel. We show that the degenerate GGDEF domain of the B. cereus PelD ortholog binds cyclic-3',5'-dimeric guanosine monophosphate (c-di-GMP), and that this binding is required for biofilm formation. Finally, we identify a diguanylate cyclase, CdgF, and a c-di-GMP phosphodiesterase, CdgE, that reciprocally regulate the production of Pel. The discovery of this novel c-di-GMP regulatory circuit significantly contributes to our limited understanding of c-di-GMP signalling in Gram-positive organisms. Furthermore, conservation of the core pelDEADAFG locus amongst many species of bacilli, clostridia, streptococci, and actinobacteria suggests that Pel may be a common biofilm matrix component in many Gram-positive bacteria.


Assuntos
Bacillus cereus/metabolismo , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica , Família Multigênica , Óperon , Polissacarídeos/metabolismo , Bacillus cereus/genética , Bacillus cereus/crescimento & desenvolvimento , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Proteínas de Escherichia coli/metabolismo , Fósforo-Oxigênio Liases/metabolismo , Filogenia , Conformação Proteica
13.
J Biol Chem ; 295(24): 8204-8213, 2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-32350117

RESUMO

Many bacteria possess enzymes that modify the essential cell-wall polymer peptidoglycan by O-acetylation. This modification occurs in numerous Gram-positive pathogens, including methicillin-resistant Staphylococcus aureus, a common cause of human infections. O-Acetylation of peptidoglycan protects bacteria from the lytic activity of lysozyme, a mammalian innate immune enzyme, and as such is important for bacterial virulence. The O-acetylating enzyme in Gram-positive bacteria, O-acetyltransferase A (OatA), is a two-domain protein consisting of an N-terminal integral membrane domain and a C-terminal extracytoplasmic domain. Here, we present the X-ray crystal structure at 1.71 Å resolution and the biochemical characterization of the C-terminal domain of S. aureus OatA. The structure revealed that this OatA domain adopts an SGNH-hydrolase fold and possesses a canonical catalytic triad. Site-specific replacement of active-site amino acids revealed the presence of a water-coordinating aspartate residue that limits esterase activity. This residue, although conserved in staphyloccocal OatA and most other homologs, is not present in the previously characterized streptococcal OatA. These results provide insights into the mechanism of acetyl transfer in the SGNH/GDSL hydrolase family and highlight important evolutionary differences between homologous OatA enzymes. Furthermore, this study enhances our understanding of PG O-acetyltransferases, which could guide the development of novel antibacterial drugs to combat infections with multidrug-resistant bacterial pathogens.


Assuntos
Acetiltransferases/química , Acetiltransferases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Staphylococcus aureus/enzimologia , Sequência de Aminoácidos , Biocatálise , Domínio Catalítico , Sequência Conservada , Cristalografia por Raios X , Esterases/metabolismo , Modelos Moleculares , Homologia Estrutural de Proteína , Relação Estrutura-Atividade
14.
J Biol Chem ; 295(34): 11949-11962, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32601062

RESUMO

Pel is a GalNAc-rich bacterial polysaccharide that contributes to the structure and function of Pseudomonas aeruginosa biofilms. The pelABCDEFG operon is highly conserved among diverse bacterial species, and Pel may therefore be a widespread biofilm determinant. Previous annotation of pel gene clusters has helped us identify an additional gene, pelX, that is present adjacent to pelABCDEFG in >100 different bacterial species. The pelX gene is predicted to encode a member of the short-chain dehydrogenase/reductase (SDR) superfamily, but its potential role in Pel-dependent biofilm formation is unknown. Herein, we have used Pseudomonas protegens Pf-5 as a model to elucidate PelX function as Pseudomonas aeruginosa lacks a pelX homologue in its pel gene cluster. We found that P. protegens forms Pel-dependent biofilms; however, despite expression of pelX under these conditions, biofilm formation was unaffected in a ΔpelX strain. This observation led us to identify a pelX paralogue, PFL_5533, which we designate here PgnE, that appears to be functionally redundant to pelX In line with this, a ΔpelX ΔpgnE double mutant was substantially impaired in its ability to form Pel-dependent biofilms. To understand the molecular basis for this observation, we determined the structure of PelX to 2.1 Å resolution. The structure revealed that PelX resembles UDP-GlcNAc C4-epimerases. Using 1H NMR analysis, we show that PelX catalyzes the epimerization between UDP-GlcNAc and UDP-GalNAc. Our results indicate that Pel-dependent biofilm formation requires a UDP-GlcNAc C4-epimerase that generates the UDP-GalNAc precursors required by the Pel synthase machinery for polymer production.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes , Carboidratos Epimerases/metabolismo , Polissacarídeos Bacterianos/metabolismo , Pseudomonas aeruginosa/fisiologia , Pseudomonas/fisiologia , Proteínas de Bactérias/genética , Carboidratos Epimerases/genética , Polissacarídeos Bacterianos/genética , Uridina Difosfato N-Acetilglicosamina/genética , Uridina Difosfato N-Acetilglicosamina/metabolismo
15.
PLoS Comput Biol ; 16(4): e1007721, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32236097

RESUMO

In bacteria functionally related genes comprising metabolic pathways and protein complexes are frequently encoded in operons and are widely conserved across phylogenetically diverse species. The evolution of these operon-encoded processes is affected by diverse mechanisms such as gene duplication, loss, rearrangement, and horizontal transfer. These mechanisms can result in functional diversification, increasing the potential evolution of novel biological pathways, and enabling pre-existing pathways to adapt to the requirements of particular environments. Despite the fundamental importance that these mechanisms play in bacterial environmental adaptation, a systematic approach for studying the evolution of operon organization is lacking. Herein, we present a novel method to study the evolution of operons based on phylogenetic clustering of operon-encoded protein families and genomic-proximity network visualizations of operon architectures. We applied this approach to study the evolution of the synthase dependent exopolysaccharide (EPS) biosynthetic systems: cellulose, acetylated cellulose, poly-ß-1,6-N-acetyl-D-glucosamine (PNAG), Pel, and alginate. These polymers have important roles in biofilm formation, antibiotic tolerance, and as virulence factors in opportunistic pathogens. Our approach revealed the complex evolutionary landscape of EPS machineries, and enabled operons to be classified into evolutionarily distinct lineages. Cellulose operons show phyla-specific operon lineages resulting from gene loss, rearrangement, and the acquisition of accessory loci, and the occurrence of whole-operon duplications arising through horizonal gene transfer. Our evolution-based classification also distinguishes between PNAG production from Gram-negative and Gram-positive bacteria on the basis of structural and functional evolution of the acetylation modification domains shared by PgaB and IcaB loci, respectively. We also predict several pel-like operon lineages in Gram-positive bacteria and demonstrate in our companion paper (Whitfield et al PLoS Pathogens, in press) that Bacillus cereus produces a Pel-dependent biofilm that is regulated by cyclic-3',5'-dimeric guanosine monophosphate (c-di-GMP).


Assuntos
Biologia Computacional/métodos , Óperon/genética , Óperon/fisiologia , Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , Evolução Biológica , Evolução Molecular , Duplicação Gênica , Filogenia , Fatores de Virulência
16.
J Bacteriol ; 202(8)2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-31988082

RESUMO

The Pel polysaccharide is a structural component of the extracellular matrix of Pseudomonas aeruginosa biofilms. Recent analyses suggest that Pel production proceeds via a synthase-dependent polysaccharide secretion pathway, which in Gram-negative bacteria is defined by an outer membrane ß-barrel porin, a periplasmic tetratricopeptide repeat-containing scaffold protein, and an inner membrane-embedded synthase. Polymerization is catalyzed by the glycosyltransferase domain of the synthase component of these systems, which is allosterically regulated by cyclic 3',5'-dimeric GMP (c-di-GMP). However, while the outer membrane and periplasmic components of the Pel system have been characterized, the inner membrane complex required for Pel polymerization has yet to be defined. To address this, we examined over 500 pel gene clusters from diverse species of Proteobacteria This analysis identified an invariant set of four syntenic genes, three of which, pelD, pelE, and pelG, are predicted to reside within the inner membrane, while the fourth, pelF, encodes a glycosyltransferase domain. Using a combination of gene deletion analysis, subcellular fractionation, coimmunoprecipitation, and bacterial two-hybrid assays, we provide evidence for the existence of an inner membrane complex of PelD, PelE, and PelG. Furthermore, we show that this complex interacts with PelF in order to facilitate its localization to the inner membrane. Mutations that abolish c-di-GMP binding to the known receptor domain of PelD had no effect on complex formation, suggesting that c-di-GMP binding stimulates Pel production through quaternary structural rearrangements. Together, these data provide the first experimental evidence of an inner membrane complex involved in Pel polysaccharide production.IMPORTANCE The exopolysaccharide Pel plays an important role in bacterial cell-cell interactions, surface adhesion, and protection against certain antibiotics. We identified invariant pelDEFG gene clusters in over 500 diverse proteobacterial species. Using Pseudomonas aeruginosa, we demonstrate that PelD, PelE, PelF, and PelG form a complex at the inner membrane and propose that this complex represents the previously unidentified Pel polysaccharide synthase, which is responsible for Pel polymerization and transport across the cytoplasmic membrane. We show that the formation of this complex is independent of cyclic 3',5'-dimeric GMP (c-di-GMP) binding to the receptor PelD. Collectively, these data establish the widespread Pel apparatus as a member of the synthase-dependent pathway of polysaccharide biosynthetic systems and broaden the architectural diversity of already-established bacterial polysaccharide synthases.


Assuntos
Proteínas de Bactérias/metabolismo , Polissacarídeos Bacterianos/biossíntese , Pseudomonas aeruginosa/metabolismo , Motivos de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biofilmes , Regulação Bacteriana da Expressão Gênica , Família Multigênica , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/genética
17.
J Biol Chem ; 294(28): 10760-10772, 2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31167793

RESUMO

During infection, the fungal pathogen Aspergillus fumigatus forms biofilms that enhance its resistance to antimicrobials and host defenses. An integral component of the biofilm matrix is galactosaminogalactan (GAG), a cationic polymer of α-1,4-linked galactose and partially deacetylated N-acetylgalactosamine (GalNAc). Recent studies have shown that recombinant hydrolase domains from Sph3, an A. fumigatus glycoside hydrolase involved in GAG synthesis, and PelA, a multifunctional protein from Pseudomonas aeruginosa involved in Pel polysaccharide biosynthesis, can degrade GAG, disrupt A. fumigatus biofilms, and attenuate fungal virulence in a mouse model of invasive aspergillosis. The molecular mechanisms by which these enzymes disrupt biofilms have not been defined. We hypothesized that the hydrolase domains of Sph3 and PelA (Sph3h and PelAh, respectively) share structural and functional similarities given their ability to degrade GAG and disrupt A. fumigatus biofilms. MALDI-TOF enzymatic fingerprinting and NMR experiments revealed that both proteins are retaining endo-α-1,4-N-acetylgalactosaminidases with a minimal substrate size of seven residues. The crystal structure of PelAh was solved to 1.54 Å and structure alignment to Sph3h revealed that the enzymes share similar catalytic site residues. However, differences in the substrate-binding clefts result in distinct enzyme-substrate interactions. PelAh hydrolyzed partially deacetylated substrates better than Sph3h, a finding that agrees well with PelAh's highly electronegative binding cleft versus the neutral surface present in Sph3h Our insight into PelAh's structure and function necessitate the creation of a new glycoside hydrolase family, GH166, whose structural and mechanistic features, along with those of GH135 (Sph3), are reported here.


Assuntos
Biofilmes/efeitos dos fármacos , Glicosídeo Hidrolases/metabolismo , Polissacarídeo-Liases/ultraestrutura , Anti-Infecciosos/metabolismo , Aspergillus fumigatus/metabolismo , Biofilmes/crescimento & desenvolvimento , Domínio Catalítico , Proteínas Fúngicas/metabolismo , Fungos/metabolismo , Glicosídeo Hidrolases/fisiologia , Hidrólise , Polissacarídeo-Liases/metabolismo , Polissacarídeos/metabolismo , Pseudomonas aeruginosa/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Especificidade por Substrato/fisiologia , Virulência
18.
J Biol Chem ; 294(37): 13833-13849, 2019 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-31416836

RESUMO

Aspergillus fumigatus is an opportunistic fungal pathogen that causes both chronic and acute invasive infections. Galactosaminogalactan (GAG) is an integral component of the A. fumigatus biofilm matrix and a key virulence factor. GAG is a heterogeneous linear α-1,4-linked exopolysaccharide of galactose and GalNAc that is partially deacetylated after secretion. A cluster of five co-expressed genes has been linked to GAG biosynthesis and modification. One gene in this cluster, ega3, is annotated as encoding a putative α-1,4-galactosaminidase belonging to glycoside hydrolase family 114 (GH114). Herein, we show that recombinant Ega3 is an active glycoside hydrolase that disrupts GAG-dependent A. fumigatus and Pel polysaccharide-dependent Pseudomonas aeruginosa biofilms at nanomolar concentrations. Using MS and functional assays, we demonstrate that Ega3 is an endo-acting α-1,4-galactosaminidase whose activity depends on the conserved acidic residues, Asp-189 and Glu-247. X-ray crystallographic structural analysis of the apo Ega3 and an Ega3-galactosamine complex, at 1.76 and 2.09 Å resolutions, revealed a modified (ß/α)8-fold with a deep electronegative cleft, which upon ligand binding is capped to form a tunnel. Our structural analysis coupled with in silico docking studies also uncovered the molecular determinants for galactosamine specificity and substrate binding at the -2 to +1 binding subsites. The findings in this study increase the structural and mechanistic understanding of the GH114 family, which has >600 members encoded by plant and opportunistic human pathogens, as well as in industrially used bacteria and fungi.


Assuntos
Aspergillus fumigatus/metabolismo , Glicosídeo Hidrolases/genética , Hexosaminidases/metabolismo , Aspergillus fumigatus/genética , Aspergillus fumigatus/ultraestrutura , Biofilmes/efeitos dos fármacos , Cristalografia por Raios X/métodos , Proteínas Fúngicas/genética , Fungos/metabolismo , Glicosídeo Hidrolases/metabolismo , Hexosaminidases/farmacologia , Hexosaminidases/ultraestrutura , Polissacarídeos/metabolismo , Virulência
19.
PLoS Pathog ; 14(4): e1006998, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29684093

RESUMO

Poly-ß(1,6)-N-acetyl-D-glucosamine (PNAG) is a major biofilm component of many pathogenic bacteria. The production, modification, and export of PNAG in Escherichia coli and Bordetella species require the protein products encoded by the pgaABCD operon. PgaB is a two-domain periplasmic protein that contains an N-terminal deacetylase domain and a C-terminal PNAG binding domain that is critical for export. However, the exact function of the PgaB C-terminal domain remains unclear. Herein, we show that the C-terminal domains of Bordetella bronchiseptica PgaB (PgaBBb) and E. coli PgaB (PgaBEc) function as glycoside hydrolases. These enzymes hydrolyze purified deacetylated PNAG (dPNAG) from Staphylococcus aureus, disrupt PNAG-dependent biofilms formed by Bordetella pertussis, Staphylococcus carnosus, Staphylococcus epidermidis, and E. coli, and potentiate bacterial killing by gentamicin. Furthermore, we found that PgaBBb was only able to hydrolyze PNAG produced in situ by the E. coli PgaCD synthase complex when an active deacetylase domain was present. Mass spectrometry analysis of the PgaB-hydrolyzed dPNAG substrate showed a GlcN-GlcNAc-GlcNAc motif at the new reducing end of detected fragments. Our 1.76 Å structure of the C-terminal domain of PgaBBb reveals a central cavity within an elongated surface groove that appears ideally suited to recognize the GlcN-GlcNAc-GlcNAc motif. The structure, in conjunction with molecular modeling and site directed mutagenesis led to the identification of the dPNAG binding subsites and D474 as the probable catalytic acid. This work expands the role of PgaB within the PNAG biosynthesis machinery, defines a new glycoside hydrolase family GH153, and identifies PgaB as a possible therapeutic agent for treating PNAG-dependent biofilm infections.


Assuntos
Amidoidrolases/metabolismo , Biofilmes/crescimento & desenvolvimento , Bordetella/enzimologia , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Glicosídeo Hidrolases/metabolismo , beta-Glucanas/química , Acetilação , Amidoidrolases/química , Bordetella/crescimento & desenvolvimento , Cristalografia por Raios X , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/química , Glicosídeo Hidrolases/química , Óperon , Conformação Proteica , beta-Glucanas/metabolismo
20.
Nat Chem Biol ; 14(1): 79-85, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29083419

RESUMO

O-Acetylation of the secondary cell wall polysaccharides (SCWP) of the Bacillus cereus group of pathogens, which includes Bacillus anthracis, is essential for the proper attachment of surface-layer (S-layer) proteins to their cell walls. Using a variety of pseudosubstrates and a chemically synthesized analog of SCWP, we report here the identification of PatB1 as a SCWP O-acetyltransferase in Bacillus cereus. Additionally, we report the crystal structure of PatB1, which provides detailed insights into the mechanism of this enzyme and defines a novel subfamily of the SGNH family of esterases and lipases. We propose a model for the O-acetylation of SCWP requiring the translocation of acetyl groups from a cytoplasmic source across the plasma membrane by PatA1 and PatA2 for their transfer to SCWP by PatB1.


Assuntos
Acetiltransferases/química , Acetiltransferases/metabolismo , Bacillus cereus/metabolismo , Parede Celular/metabolismo , Modelos Biológicos , Polissacarídeos Bacterianos/metabolismo , Acetilação , Acetiltransferases/genética , Sequência de Aminoácidos , Bacillus cereus/enzimologia , Membrana Celular/metabolismo , Clonagem Molecular , Citoplasma/metabolismo , Modelos Moleculares , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/genética , Conformação Proteica , Engenharia de Proteínas , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa