Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Biol ; 12(4): e1001832, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24714042

RESUMO

Several studies have suggested crosstalk between different clathrin-independent endocytic pathways. However, the molecular mechanisms and functional relevance of these interactions are unclear. Caveolins and cavins are crucial components of caveolae, specialized microdomains that also constitute an endocytic route. Here we show that specific caveolar proteins are independently acting negative regulators of clathrin-independent endocytosis. Cavin-1 and Cavin-3, but not Cavin-2 or Cavin-4, are potent inhibitors of the clathrin-independent carriers/GPI-AP enriched early endosomal compartment (CLIC/GEEC) endocytic pathway, in a process independent of caveola formation. Caveolin-1 (CAV1) and CAV3 also inhibit the CLIC/GEEC pathway upon over-expression. Expression of caveolar protein leads to reduction in formation of early CLIC/GEEC carriers, as detected by quantitative electron microscopy analysis. Furthermore, the CLIC/GEEC pathway is upregulated in cells lacking CAV1/Cavin-1 or with reduced expression of Cavin-1 and Cavin-3. Inhibition by caveolins can be mimicked by the isolated caveolin scaffolding domain and is associated with perturbed diffusion of lipid microdomain components, as revealed by fluorescence recovery after photobleaching (FRAP) studies. In the absence of cavins (and caveolae) CAV1 is itself endocytosed preferentially through the CLIC/GEEC pathway, but the pathway loses polarization and sorting attributes with consequences for membrane dynamics and endocytic polarization in migrating cells and adult muscle tissue. We also found that noncaveolar Cavin-1 can act as a modulator for the activity of the key regulator of the CLIC/GEEC pathway, Cdc42. This work provides new insights into the regulation of noncaveolar clathrin-independent endocytosis by specific caveolar proteins, illustrating multiple levels of crosstalk between these pathways. We show for the first time a role for specific cavins in regulating the CLIC/GEEC pathway, provide a new tool to study this pathway, identify caveola-independent functions of the cavins and propose a novel mechanism for inhibition of the CLIC/GEEC pathway by caveolin.


Assuntos
Cavéolas/metabolismo , Caveolina 1/metabolismo , Endocitose/fisiologia , Microdomínios da Membrana/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Ligação a RNA/metabolismo , Células 3T3 , Animais , Células COS , Movimento Celular , Fenômenos Fisiológicos Celulares , Chlorocebus aethiops , Colesterol/metabolismo , Clatrina , Endocitose/genética , Ativação Enzimática , Proteínas Ligadas por GPI/metabolismo , Receptores de Hialuronatos/metabolismo , Proteínas de Membrana/genética , Camundongos , Interferência de RNA , RNA Interferente Pequeno , Proteínas de Ligação a RNA/genética , Proteína cdc42 de Ligação ao GTP/metabolismo
2.
Traffic ; 14(12): 1272-89, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24025110

RESUMO

Dynamin GTPase activity increases when it oligomerizes either into helices in the presence of lipid templates or into rings in the presence of SH3 domain proteins. Dynasore is a dynamin inhibitor of moderate potency (IC50 ~ 15 µM in vitro). We show that dynasore binds stoichiometrically to detergents used for in vitro drug screening, drastically reducing its potency (IC50 = 479 µM) and research tool utility. We synthesized a focused set of dihydroxyl and trihydroxyl dynasore analogs called the Dyngo™ compounds, five of which had improved potency, reduced detergent binding and reduced cytotoxicity, conferred by changes in the position and/or number of hydroxyl substituents. The Dyngo compound 4a was the most potent compound, exhibiting a 37-fold improvement in potency over dynasore for liposome-stimulated helical dynamin activity. In contrast, while dynasore about equally inhibited dynamin assembled in its helical or ring states, 4a and 6a exhibited >36-fold reduced activity against rings, suggesting that they can discriminate between helical or ring oligomerization states. 4a and 6a inhibited dynamin-dependent endocytosis of transferrin in multiple cell types (IC50 of 5.7 and 5.8 µM, respectively), at least sixfold more potently than dynasore, but had no effect on dynamin-independent endocytosis of cholera toxin. 4a also reduced synaptic vesicle endocytosis and activity-dependent bulk endocytosis in cultured neurons and synaptosomes. Overall, 4a and 6a are improved and versatile helical dynamin and endocytosis inhibitors in terms of potency, non-specific binding and cytotoxicity. The data further suggest that the ring oligomerization state of dynamin is not required for clathrin-mediated endocytosis.


Assuntos
Dinaminas/antagonistas & inibidores , Endocitose/efeitos dos fármacos , Hidrazonas/farmacologia , Naftóis/farmacologia , Animais , Linhagem Celular Tumoral , Células Cultivadas , Toxina da Cólera/metabolismo , Relação Dose-Resposta a Droga , Descoberta de Drogas , Dinaminas/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Hidrazonas/síntese química , Hidrazonas/química , Naftóis/química , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ligação Proteica , Transporte Proteico , Ratos , Ratos Sprague-Dawley , Ovinos , Vesículas Sinápticas/efeitos dos fármacos , Vesículas Sinápticas/metabolismo , Transferrinas/metabolismo
3.
J Cell Sci ; 124(Pt 12): 1965-72, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21625007

RESUMO

Caveolae form a specialized platform within the plasma membrane that is crucial for an array of important biological functions, ranging from signaling to endocytosis. Using total internal reflection fluorescence (TIRF) and 3D fast spinning-disk confocal imaging to follow caveola dynamics for extended periods, and electron microscopy to obtain high resolution snapshots, we found that the vast majority of caveolae are dynamic with lifetimes ranging from a few seconds to several minutes. Use of these methods revealed a change in the dynamics and localization of caveolae during mitosis. During interphase, the equilibrium between the arrival and departure of caveolae from the cell surface maintains the steady-state distribution of caveolin-1 (Cav1) at the plasma membrane. During mitosis, increased dynamics coupled to an imbalance between the arrival and departure of caveolae from the cell surface induces a redistribution of Cav1 from the plasma membrane to intracellular compartments. These changes are reversed during cytokinesis. The observed redistribution of Cav1 was reproduced by treatment of interphase cells with nocodazole, suggesting that microtubule rearrangements during mitosis can mediate caveolin relocalization. This study provides new insights into the dynamics of caveolae and highlights precise regulation of caveola budding and recycling during mitosis.


Assuntos
Cavéolas/fisiologia , Mitose/fisiologia , Animais , Caveolina 1/genética , Caveolina 1/metabolismo , Ciclo Celular/genética , Haplorrinos , Células HeLa , Humanos , Microscopia Eletrônica
4.
Curr Biol ; 18(22): 1802-8, 2008 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-19036340

RESUMO

Clathrin-independent endocytosis is an umbrella term for a variety of endocytic pathways that internalize numerous cargoes independently of the canonical coat protein Clathrin [1, 2]. Electron-microscopy studies have defined the pleiomorphic CLathrin-Independent Carriers (CLICs) and GPI-Enriched Endocytic Compartments (GEECs) as related major players in such uptake [3, 4]. This CLIC/GEEC pathway relies upon cellular signaling and activation through small G proteins, but mechanistic insight into the biogenesis of its tubular and tubulovesicular carriers is lacking. Here we show that the Rho-GAP-domain-containing protein GRAF1 marks, and is indispensable for, a major Clathrin-independent endocytic pathway. This pathway is characterized by its ability to internalize bacterial exotoxins, GPI-linked proteins, and extracellular fluid. We show that GRAF1 localizes to PtdIns(4,5)P2-enriched, tubular, and punctate lipid structures via N-terminal BAR and PH domains. These membrane carriers are relatively devoid of caveolin1 and flotillin1 but are associated with activity of the small G protein Cdc42. This study provides the first specific noncargo marker for CLIC/GEEC endocytic membranes and demonstrates how GRAF1 can coordinate small G protein signaling and membrane remodeling to facilitate internalization of CLIC/GEEC pathway cargoes.


Assuntos
Endocitose/fisiologia , Proteínas Ativadoras de GTPase/fisiologia , Animais , Endocitose/genética , Proteínas Ativadoras de GTPase/química , Células HeLa , Humanos , Metabolismo dos Lipídeos , Camundongos , Células NIH 3T3 , Estrutura Terciária de Proteína , Ratos , Transdução de Sinais
5.
Sci Rep ; 11(1): 15890, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34354100

RESUMO

Beer is one of the most popular beverages worldwide. As a product of variable agricultural ingredients and processes, beer has high molecular complexity. We used DIA/SWATH-MS to investigate the proteomic complexity and diversity of 23 commercial Australian beers. While the overall complexity of the beer proteome was modest, with contributions from barley and yeast proteins, we uncovered a very high diversity of post-translational modifications (PTMs), especially proteolysis, glycation, and glycosylation. Proteolysis was widespread throughout barley proteins, but showed clear site-specificity. Oligohexose modifications were common on lysines in barley proteins, consistent with glycation by maltooligosaccharides released from starch during malting or mashing. O-glycosylation consistent with oligomannose was abundant on secreted yeast glycoproteins. We developed and used data analysis pipelines to efficiently extract and quantify site-specific PTMs from SWATH-MS data, and showed incorporating these features into proteomic analyses extended analytical precision. We found that the key differentiator of the beer glyco/proteome was the brewery, with beer from independent breweries having a distinct profile to beer from multinational breweries. Within a given brewery, beer styles also had distinct glyco/proteomes. Targeting our analyses to beers from a single brewery, Newstead Brewing Co., allowed us to identify beer style-specific features of the glyco/proteome. Specifically, we found that proteins in darker beers tended to have low glycation and high proteolysis. Finally, we objectively quantified features of foam formation and stability, and showed that these quality properties correlated with the concentration of abundant surface-active proteins from barley and yeast.


Assuntos
Cerveja/análise , Austrália , Grão Comestível/química , Proteínas Fúngicas/análise , Glicosilação , Hordeum/química , Processamento de Proteína Pós-Traducional , Proteólise , Proteoma/análise , Proteômica/métodos , Amido/análise
7.
Nat Cell Biol ; 16(6): 595-606, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24837829

RESUMO

Several cell surface molecules including signalling receptors are internalized by clathrin-independent endocytosis. How this process is initiated, how cargo proteins are sorted and membranes are bent remains unknown. Here, we found that a carbohydrate-binding protein, galectin-3 (Gal3), triggered the glycosphingolipid (GSL)-dependent biogenesis of a morphologically distinct class of endocytic structures, termed clathrin-independent carriers (CLICs). Super-resolution and reconstitution studies showed that Gal3 required GSLs for clustering and membrane bending. Gal3 interacted with a defined set of cargo proteins. Cellular uptake of the CLIC cargo CD44 was dependent on Gal3, GSLs and branched N-glycosylation. Endocytosis of ß1-integrin was also reliant on Gal3. Analysis of different galectins revealed a distinct profile of cargoes and uptake structures, suggesting the existence of different CLIC populations. We conclude that Gal3 functionally integrates carbohydrate specificity on cargo proteins with the capacity of GSLs to drive clathrin-independent plasma membrane bending as a first step of CLIC biogenesis.


Assuntos
Endocitose , Galectina 3/metabolismo , Glicoesfingolipídeos/metabolismo , Vesículas Transportadoras/metabolismo , Animais , Proteínas Sanguíneas , Galectina 3/genética , Galectinas , Glicosilação , Células HeLa , Humanos , Receptores de Hialuronatos/metabolismo , Integrina beta1/metabolismo , Camundongos , Processamento de Proteína Pós-Traducional , Transporte Proteico , Interferência de RNA , Transfecção
8.
PLoS One ; 9(6): e100554, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24971745

RESUMO

Single-cell-resolved measurements reveal heterogeneous distributions of clathrin-dependent (CD) and -independent (CLIC/GEEC: CG) endocytic activity in Drosophila cell populations. dsRNA-mediated knockdown of core versus peripheral endocytic machinery induces strong changes in the mean, or subtle changes in the shapes of these distributions, respectively. By quantifying these subtle shape changes for 27 single-cell features which report on endocytic activity and cell morphology, we organize 1072 Drosophila genes into a tree-like hierarchy. We find that tree nodes contain gene sets enriched in functional classes and protein complexes, providing a portrait of core and peripheral control of CD and CG endocytosis. For 470 genes we obtain additional features from separate assays and classify them into early- or late-acting genes of the endocytic pathways. Detailed analyses of specific genes at intermediate levels of the tree suggest that Vacuolar ATPase and lysosomal genes involved in vacuolar biogenesis play an evolutionarily conserved role in CG endocytosis.


Assuntos
Clatrina/metabolismo , Proteínas de Drosophila/metabolismo , Endocitose/fisiologia , Animais , Células CHO , Células Cultivadas , Clatrina/genética , Cricetinae , Cricetulus , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Drosophila/genética , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/genética , Endocitose/genética , Proteínas do Olho/antagonistas & inibidores , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Perfilação da Expressão Gênica , Hemócitos/citologia , Hemócitos/metabolismo , Humanos , Proteínas Qa-SNARE/antagonistas & inibidores , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , ATPases Vacuolares Próton-Translocadoras/química , ATPases Vacuolares Próton-Translocadoras/metabolismo
9.
Mol Biol Cell ; 24(2): 129-44, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23154999

RESUMO

The ErbB2 receptor is a clinically validated cancer target whose internalization and trafficking mechanisms remain poorly understood. HSP90 inhibitors, such as geldanamycin (GA), have been developed to target the receptor to degradation or to modulate downstream signaling. Despite intense investigations, the entry route and postendocytic sorting of ErbB2 upon GA stimulation have remained controversial. We report that ErbB2 levels inversely impact cell clathrin-mediated endocytosis (CME) capacity. Indeed, the high levels of the receptor are responsible for its own low internalization rate. GA treatment does not directly modulate ErbB2 CME rate but it affects ErbB2 recycling fate, routing the receptor to modified multivesicular endosomes (MVBs) and lysosomal compartments, by perturbing early/recycling endosome structure and sorting capacity. This activity occurs irrespective of the cargo interaction with HSP90, as both ErbB2 and the constitutively recycled, HSP90-independent, transferrin receptor are found within modified endosomes, and within aberrant, elongated recycling tubules, leading to modified MVBs/lysosomes. We propose that GA, as part of its anticancer activity, perturbs early/recycling endosome sorting, routing recycling cargoes toward mixed endosomal compartments.


Assuntos
Antineoplásicos/farmacologia , Benzoquinonas/farmacologia , Lactamas Macrocíclicas/farmacologia , Lisossomos/metabolismo , Corpos Multivesiculares/metabolismo , Receptor ErbB-2/metabolismo , Transferrina/metabolismo , Animais , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Clatrina/fisiologia , Vesículas Revestidas por Clatrina/metabolismo , Dinaminas/metabolismo , Tomografia com Microscopia Eletrônica , Endocitose , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Humanos , Camundongos , Microscopia de Fluorescência , Corpos Multivesiculares/efeitos dos fármacos , Corpos Multivesiculares/ultraestrutura , Transporte Proteico/efeitos dos fármacos , Análise de Célula Única
10.
Mol Biol Cell ; 23(7): 1316-29, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22323287

RESUMO

Eps15 homology domain-containing 2 (EHD2) belongs to the EHD-containing protein family of dynamin-related ATPases involved in membrane remodeling in the endosomal system. EHD2 dimers oligomerize into rings on highly curved membranes, resulting in stimulation of the intrinsic ATPase activity. In this paper, we report that EHD2 is specifically and stably associated with caveolae at the plasma membrane and not involved in clathrin-mediated endocytosis or endosomal recycling, as previously suggested. EHD2 interacts with pacsin2 and cavin1, and ordered membrane assembly of EHD2 is dependent on cavin1 and caveolar integrity. While the EHD of EHD2 is dispensable for targeting, we identified a loop in the nucleotide-binding domain that, together with ATP binding, is required for caveolar localization. EHD2 was not essential for the formation or shaping of caveolae, but high levels of EHD2 caused distortion and loss of endogenous caveolae. Assembly of EHD2 stabilized and constrained caveolae to the plasma membrane to control turnover, and depletion of EHD2, resulting in endocytic and more dynamic and short-lived caveolae. Thus, following the identification of caveolin and cavins, EHD2 constitutes a third structural component of caveolae involved in controlling the stability and turnover of this organelle.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Transporte/metabolismo , Cavéolas/metabolismo , Células 3T3-L1 , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Sequência de Bases , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/química , Proteínas de Transporte/genética , Cavéolas/ultraestrutura , Caveolina 1/metabolismo , Linhagem Celular , Cricetinae , Proteínas do Citoesqueleto , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Microscopia Imunoeletrônica , Modelos Biológicos , Modelos Moleculares , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas/metabolismo , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
11.
Mol Biol Cell ; 22(22): 4380-9, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21965292

RESUMO

The rho GTPase-activating protein GTPase regulator associated with focal adhesion kinase-1 (GRAF1) remodels membranes into tubulovesicular clathrin-independent carriers (CLICs) mediating lipid-anchored receptor endocytosis. However, the cell biological functions of this highly prevalent endocytic pathway are unclear. In this article, we present biochemical and cell biological evidence that GRAF1 interacted with a network of endocytic and adhesion proteins and was found enriched at podosome-like adhesions and src-induced podosomes. We further demonstrate that these sites comprise microdomains of highly ordered lipid enriched in GRAF1 endocytic cargo. GRAF1 activity was upregulated in spreading cells and uptake via CLICs was concentrated at the leading edge of migrating cells. Depletion of GRAF1, which inhibits CLIC generation, resulted in profound defects in cell spreading and migration. We propose that GRAF1 remodels membrane microdomains at adhesion sites into endocytic carriers, facilitating membrane turnover during cell morphological changes.


Assuntos
Junções Célula-Matriz/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Adesão Celular , Membrana Celular , Movimento Celular , Clatrina/metabolismo , Endocitose , Quinase 1 de Adesão Focal/metabolismo , Adesões Focais/metabolismo , Células HeLa , Humanos , Lipídeos , Microdomínios da Membrana/metabolismo , Estrutura Terciária de Proteína , Transporte Proteico , Interferência de RNA
12.
J Cell Biol ; 191(3): 439-41, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21041440

RESUMO

In this issue, a study by Hayer et al. (2010. J. Cell Biol. doi: 10.1083/jcb.201003086) provides insights into the trafficking of caveolins, the major membrane proteins of caveolae. As well as providing evidence for ubiquitin-mediated endosomal sorting and degradation of caveolin in multivesicular bodies (MVBs), the new findings question the existence of a unique organelle proposed nine years ago, the caveosome.


Assuntos
Cavéolas/metabolismo , Caveolinas/metabolismo , Animais , Endossomos/metabolismo , Humanos , Corpos Multivesiculares/metabolismo , Transporte Proteico , Ubiquitina/metabolismo
13.
Curr Opin Cell Biol ; 22(4): 519-27, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20439156

RESUMO

Eukaryotic cells deftly coordinate an array of endocytic pathways beyond the classical clathrin-mediated endocytic route. Although the existence of clathrin-independent endocytic pathways has been accepted for some time, only recently have tools been developed that specifically delineate their fine details, including molecular composition and ultrastructural morphology. Identification of the salient features of distinct pathways has concomitantly attributed them with specific roles during important cellular processes. Insight from model organisms confirms these roles and suggests maintenance of crucially adapted functions across species. Among other roles, clathrin-independent endocytosis has now been linked to plasma membrane repair, cellular spreading, cellular polarization, and modulation of intercellular signaling. The field is now primed to identify how these pathways function within physiologically relevant environments.


Assuntos
Células/metabolismo , Clatrina/metabolismo , Endocitose , Animais , Transporte Biológico , Humanos , Modelos Biológicos , Vesículas Transportadoras/metabolismo
14.
J Cell Biol ; 190(4): 675-91, 2010 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-20713605

RESUMO

Although the importance of clathrin- and caveolin-independent endocytic pathways has recently emerged, key aspects of these routes remain unknown. Using quantitative ultrastructural approaches, we show that clathrin-independent carriers (CLICs) account for approximately three times the volume internalized by the clathrin-mediated endocytic pathway, forming the major pathway involved in uptake of fluid and bulk membrane in fibroblasts. Electron tomographic analysis of the 3D morphology of the earliest carriers shows that they are multidomain organelles that form a complex sorting station as they mature. Proteomic analysis provides direct links between CLICs, cellular adhesion turnover, and migration. Consistent with this, CLIC-mediated endocytosis of key cargo proteins, CD44 and Thy-1, is polarized at the leading edge of migrating fibroblasts, while transient ablation of CLICs impairs their ability to migrate. These studies provide the first quantitative ultrastructural analysis and molecular characterization of the major endocytic pathway in fibroblasts, a pathway that provides rapid membrane turnover at the leading edge of migrating cells.


Assuntos
Membrana Celular/metabolismo , Movimento Celular/fisiologia , Clatrina/metabolismo , Endocitose/fisiologia , Endossomos/metabolismo , Animais , Transporte Biológico/fisiologia , Biomarcadores/metabolismo , Caveolina 1/genética , Caveolina 1/metabolismo , Membrana Celular/ultraestrutura , Polaridade Celular , Endossomos/ultraestrutura , Fibroblastos/metabolismo , Fibroblastos/ultraestrutura , Camundongos , Camundongos Knockout , Células NIH 3T3 , Frações Subcelulares/química , Frações Subcelulares/metabolismo
15.
J Biol Chem ; 283(10): 6476-88, 2008 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-18096699

RESUMO

Dysferlin and Caveolin-3 are plasma membrane proteins associated with muscular dystrophy. Patients with mutations in the CAV3 gene show dysferlin mislocalization in muscle cells. By utilizing caveolin-null cells, expression of caveolin mutants, and different mutants of dysferlin, we have dissected the site of action of caveolin with respect to dysferlin trafficking pathways. We now show that Caveolin-1 or -3 can facilitate exit of a dysferlin mutant that accumulates in the Golgi complex of Cav1(-/-) cells. In contrast, wild type dysferlin reaches the plasma membrane but is rapidly endocytosed in Cav1(-/-) cells. We demonstrate that the primary effect of caveolin is to cause surface retention of dysferlin. Caveolin-1 or Caveolin-3, but not specific caveolin mutants, inhibit endocytosis of dysferlin through a clathrin-independent pathway colocalizing with internalized glycosylphosphatidylinositol-anchored proteins. Our results provide new insights into the role of this endocytic pathway in surface remodeling of specific surface components. In addition, they highlight a novel mechanism of action of caveolins relevant to the pathogenic mechanisms underlying caveolin-associated disease.


Assuntos
Caveolina 1/metabolismo , Caveolina 3/metabolismo , Membrana Celular/metabolismo , Endocitose/fisiologia , Proteínas de Membrana/metabolismo , Células Musculares/metabolismo , Animais , Caveolina 1/genética , Caveolina 3/genética , Membrana Celular/genética , Clatrina/genética , Clatrina/metabolismo , Disferlina , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Mutação , Transporte Proteico/fisiologia
16.
J Cell Sci ; 121(Pt 12): 2075-86, 2008 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-18505796

RESUMO

Caveolae are an abundant feature of mammalian cells. Integral membrane proteins called caveolins drive the formation of caveolae but the precise mechanisms underlying caveola formation, and the origin of caveolae and caveolins during evolution, are unknown. Systematic evolutionary analysis shows conservation of genes encoding caveolins in metazoans. We provide evidence for extensive and ancient, local and genomic gene duplication, and classify distinct caveolin gene families. Vertebrate caveolin-1 and caveolin-3 isoforms, as well as an invertebrate (Apis mellifera, honeybee) caveolin, all form morphologically identical caveolae in caveolin-1-null mouse cells, demonstrating that caveola formation is a conserved feature of evolutionarily distant caveolins. However, coexpression of flotillin-1 and flotillin-2 did not cause caveola biogenesis in this system. In contrast to the other tested caveolins, C. elegans caveolin is efficiently transported to the plasma membrane but does not generate caveolae, providing evidence of diversity of function in the caveolin gene family. Using C. elegans caveolin as a template to generate hybrid caveolin constructs we now define domains of caveolin required for caveolae biogenesis. These studies lead to a model for caveola formation and novel insights into the evolution of caveolin function.


Assuntos
Caenorhabditis elegans , Cavéolas/fisiologia , Caveolinas/metabolismo , Proteínas de Membrana/metabolismo , Isoformas de Proteínas/metabolismo , Sequência de Aminoácidos , Animais , Cavéolas/ultraestrutura , Caveolinas/deficiência , Caveolinas/genética , Linhagem Celular , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Microscopia Confocal , Dados de Sequência Molecular , Biogênese de Organelas , Filogenia , Isoformas de Proteínas/genética , Sinais Direcionadores de Proteínas , Transporte Proteico/genética , Ratos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Deleção de Sequência , Transfecção
17.
Traffic ; 8(6): 702-17, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17461795

RESUMO

Glycosyl-phosphatidylinositol (GPI)-anchored proteins (GPI-APs) are present at the surface of living cells in cholesterol dependent nanoscale clusters. These clusters appear to act as sorting signals for the selective endocytosis of GPI-APs via a Cdc42-regulated, dynamin and clathrin-independent pinocytic pathway called the GPI-AP-enriched early endosomal compartments (GEECs) pathway. Here we show that endocytosis via the GEECs pathway is inhibited by mild depletion of cholesterol, perturbation of actin polymerization or overexpression of the Cdc42/Rac-interactive-binding (CRIB) motif of neural Wiskott-Aldrich syndrome protein (N-WASP). Consistent with the involvement of Cdc42-based actin nanomachinery, nascent endocytic vesicles containing cargo for the GEEC pathway co-localize with fluorescent protein-tagged isoforms of Cdc42, CRIB domain, N-WASP and actin; high-resolution electron microscopy on plasma membrane sheets reveals Cdc42-labelled regions rich in green fluorescent protein-GPI. Using total internal reflection fluorescence microscopy at the single-molecule scale, we find that mild cholesterol depletion alters the dynamics of actin polymerization at the cell surface by inhibiting Cdc42 activation and consequently its stabilization at the cell surface. These results suggest that endocytosis into GEECs occurs through a cholesterol-sensitive, Cdc42-based recruitment of the actin polymerization machinery.


Assuntos
Actinas/metabolismo , Colesterol/metabolismo , Endocitose , Glicosilfosfatidilinositóis/metabolismo , Proteína da Síndrome de Wiskott-Aldrich/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Actinas/ultraestrutura , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Células CHO , Linhagem Celular , Clatrina/metabolismo , Clatrina/ultraestrutura , Cricetinae , Cricetulus , Dinaminas/metabolismo , Dinaminas/ultraestrutura , Proteínas de Fluorescência Verde/metabolismo , Proteína da Síndrome de Wiskott-Aldrich/química , Proteína da Síndrome de Wiskott-Aldrich/ultraestrutura , Proteína cdc42 de Ligação ao GTP/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa