Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Int J Syst Evol Microbiol ; 68(8): 2607-2614, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29957169

RESUMO

Nine Gram-negative, rod-shaped bacteria were isolated from Lebeckia ambigua root nodules. All strains were able to nodulate and fix nitrogen with Lebeckia ambigua apart from WSM4178T, WSM4181 and WSM4182. Based on the 16S rRNA gene phylogeny, all strains were closely related to Paraburkholderia species (98.4-99.9 %), belonging to the Betaproteobacteria class and Burkholderiaceae family. According to 16S rRNA gene phylogeny the closest relative for WSM4174-WSM4177 and WSM4179-WSM4180 was Paraburkholderia tuberum(99.80-99.86 %), for WSM4178T was Paraburkholderia caledonica (98.42 %) and for WSM4181-WSM4182 was Paraburkholderia graminis (99.79 %). Analysis of the gyrB and recA housekeeping genes supported the assignment of WSM4181-WSM4182 to P. graminis and the other investigated strains could be assigned to the genus Paraburkholderia. The results of DNA-DNA hybridization, physiological and biochemical tests allowed genotypic and phenotypic differentiation of WSM4178T from the closest validly published Paraburkholderia species. However, WSM4174-WSM4177 and WSM4179-WSM4180 could not reliably be distinguished from its closest neighbour and therefore complete genome comparison was performed between WSM4176 and P. tuberum STM678T which gave ANI values of 96-97 %. Chemotaxonomic data, including fatty acid profiles and quinone data supported the assignment of the strains to the genus Paraburkholderia. On the basis of genotypic and phenotypic data one novel species, Paraburkholderiafynbosensis sp. nov. (WSM4178T=LMG 27177T=HAMBI 3356T), is proposed and the isolation of P. tuberum and P. graminis from root nodules of Lebeckia ambigua is reported.


Assuntos
Burkholderiaceae/classificação , Fabaceae/microbiologia , Filogenia , Nódulos Radiculares de Plantas/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , Burkholderiaceae/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Quinonas/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , África do Sul , Simbiose
2.
Mol Plant Microbe Interact ; 29(8): 609-19, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27269511

RESUMO

Genome analysis of fourteen mimosoid and four papilionoid beta-rhizobia together with fourteen reference alpha-rhizobia for both nodulation (nod) and nitrogen-fixing (nif/fix) genes has shown phylogenetic congruence between 16S rRNA/MLSA (combined 16S rRNA gene sequencing and multilocus sequence analysis) and nif/fix genes, indicating a free-living diazotrophic ancestry of the beta-rhizobia. However, deeper genomic analysis revealed a complex symbiosis acquisition history in the beta-rhizobia that clearly separates the mimosoid and papilionoid nodulating groups. Mimosoid-nodulating beta-rhizobia have nod genes tightly clustered in the nodBCIJHASU operon, whereas papilionoid-nodulating Burkholderia have nodUSDABC and nodIJ genes, although their arrangement is not canonical because the nod genes are subdivided by the insertion of nif and other genes. Furthermore, the papilionoid Burkholderia spp. contain duplications of several nod and nif genes. The Burkholderia nifHDKEN and fixABC genes are very closely related to those found in free-living diazotrophs. In contrast, nifA is highly divergent between both groups, but the papilionoid species nifA is more similar to alpha-rhizobia nifA than to other groups. Surprisingly, for all Burkholderia, the fixNOQP and fixGHIS genes required for cbb3 cytochrome oxidase production and assembly are missing. In contrast, symbiotic Cupriavidus strains have fixNOQPGHIS genes, revealing a divergence in the evolution of two distinct electron transport chains required for nitrogen fixation within the beta-rhizobia.


Assuntos
Proteínas de Bactérias/genética , Burkholderia/genética , Genoma Bacteriano/genética , Mimosa/microbiologia , Simbiose/genética , Burkholderia/enzimologia , Burkholderia/fisiologia , Cupriavidus/enzimologia , Cupriavidus/genética , Cupriavidus/fisiologia , Complexo IV da Cadeia de Transporte de Elétrons/genética , Transferência Genética Horizontal , Nitrogênio/metabolismo , Fixação de Nitrogênio , Filogenia , Nodulação/genética , RNA Ribossômico 16S/genética , Fatores de Transcrição/genética
3.
Int J Syst Evol Microbiol ; 65(12): 4716-4723, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26410793

RESUMO

Seven strains, ICMP 19430T, ICMP 19429, ICMP 19431, WSM4637, WSM4638, WSM4639 and WSM4640, were isolated from nitrogen-fixing nodules on roots of the invasive South African legume Dipogon lignosus (subfamily Papilionoideae, tribe Phaseoleae) in New Zealand and Western Australia, and their taxonomic positions were investigated by using a polyphasic approach. All seven strains grew at 10-37 °C (optimum, 25-30 °C), at pH 4.0-9.0 (optimum, pH 6.0-7.0) and with 0-2 % (w/v) NaCl (optimum growth in the absence of NaCl). On the basis of 16S rRNA gene sequence analysis, the strains showed 99.0-99.5 % sequence similarity to the closest type strain, Burkholderia phytofirmans PsJNT, and 98.4-99.7 % sequence similarity to Burkholderia caledonica LMG 19076T. The predominant fatty acids were C18 : 1ω7c (21.0 % of the total fatty acids in strain ICMP 19430T), C16 : 0 (19.1 %), C17 : 0 cyclo (18.9 %), summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c; 10.7 %) and C19 : 0 cyclov ω8c (7.5 %). The polar lipid profile consisted of a mixture of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and several uncharacterized aminophospholipids and phospholipids. The major isoprenoid quinone was Q-8 and the DNA G+C content of strain ICMP 19430T was 63.2 mol%. The DNA­DNA relatedness of the novel strains with respect to the closest neighbouring members of the genus Burkholderia was 55 % or less. On the basis of 16S rRNA and recA gene sequence similarities and chemotaxonomic and phenotypic data,these strains represent a novel symbiotic species in the genus Burkholderia, for which the name Burkholderia dipogonis sp. nov. is proposed, with the type strain ICMP 19430T (=LMG28415T=HAMBI 3637T).


Assuntos
Burkholderia/classificação , Fabaceae/microbiologia , Filogenia , Raízes de Plantas/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , Burkholderia/genética , Burkholderia/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Espécies Introduzidas , Dados de Sequência Molecular , Nova Zelândia , Fixação de Nitrogênio , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/química , Austrália Ocidental
4.
Appl Microbiol Biotechnol ; 99(13): 5547-62, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25776061

RESUMO

Accurate identification of soil bacteria that form nitrogen-fixing associations with legume crops is challenging given the phylogenetic diversity of root nodule bacteria (RNB). The labor-intensive and time-consuming 16S ribosomal RNA (rRNA) sequencing and/or multilocus sequence analysis (MLSA) of conserved genes so far remain the favored molecular tools to characterize symbiotic bacteria. With the development of mass spectrometry (MS) as an alternative method to rapidly identify bacterial isolates, we recently showed that matrix-assisted laser desorption ionization (MALDI) time-of-flight (TOF) can accurately characterize RNB found inside plant nodules or grown in cultures. Here, we report on the development of a MALDI-TOF RNB-specific spectral database built on whole cell MS fingerprints of 116 strains representing the major rhizobial genera. In addition to this RNB-specific module, which was successfully tested on unknown field isolates, a subset of 13 ribosomal proteins extracted from genome data was found to be sufficient for the reliable identification of nodule isolates to rhizobial species as shown in the putatively ascribed ribosomal protein masses (PARPM) database. These results reveal that data gathered from genome sequences can be used to expand spectral libraries to aid the accurate identification of bacterial species by MALDI-TOF MS.


Assuntos
Bactérias/química , Bactérias/classificação , Biodiversidade , Proteínas Ribossômicas/análise , Nódulos Radiculares de Plantas/microbiologia , Microbiologia do Solo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Bactérias/genética , Proteínas de Bactérias/genética , Biomarcadores/análise , Análise por Conglomerados , DNA Ribossômico/química , DNA Ribossômico/genética , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
5.
Int J Syst Evol Microbiol ; 64(Pt 4): 1090-1095, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24368690

RESUMO

Three strains of Gram-stain-negative, rod-shaped bacteria were isolated from Lebeckia ambigua root nodules and authenticated on this host. Based on the 16S rRNA gene sequence phylogeny, they were shown to belong to the genus Burkholderia, with the representative strain WSM3556(T) being most closely related to Burkholderia caledonica LMG 23644(T) (98.70 % 16S rRNA gene sequence similarity) and Burkholderia rhynchosiae WSM3937(T) (98.50 %). Additionally, these strains formed a distinct group in phylogenetic trees of the housekeeping genes gyrB and recA. Chemotaxonomic data, including fatty acid profiles and analysis of respiratory quinones, supported the assignment of our strains to the genus Burkholderia. Results of DNA-DNA hybridizations, MALDI-TOF MS analysis and physiological and biochemical tests allowed genotypic and phenotypic differentiation of our strains from their nearest neighbour species. Therefore, these strains represent a novel species, for which the name Burkholderia dilworthii sp. nov. is proposed, with the type strain WSM3556(T) ( = LMG 27173(T) = HAMBI 3353(T)).


Assuntos
Burkholderia/classificação , Fabaceae/microbiologia , Filogenia , Nódulos Radiculares de Plantas/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , Burkholderia/genética , Burkholderia/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Genes Bacterianos , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , África do Sul , Ubiquinona/química
6.
Ann Bot ; 112(1): 1-15, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23712451

RESUMO

BACKGROUND AND AIMS: The legume clade Lotononis sensu lato (s.l.; tribe Crotalarieae) comprises three genera: Listia, Leobordea and Lotononis sensu stricto (s.s.). Listia species are symbiotically specific and form lupinoid nodules with rhizobial species of Methylobacterium and Microvirga. This work investigated whether these symbiotic traits were confined to Listia by determining the ability of rhizobial strains isolated from species of Lotononis s.l. to nodulate Listia, Leobordea and Lotononis s.s. hosts and by examining the morphology and structure of the resulting nodules. METHODS: Rhizobia were characterized by sequencing their 16S rRNA and nodA genes. Nodulation and N2 fixation on eight taxonomically diverse Lotononis s.l. species were determined in glasshouse trials. Nodules of all hosts, and the process of infection and nodule initiation in Listia angolensis and Listia bainesii, were examined by light microscopy. KEY RESULTS: Rhizobia associated with Lotononis s.l. were phylogenetically diverse. Leobordea and Lotononis s.s. isolates were most closely related to Bradyrhizobium spp., Ensifer meliloti, Mesorhizobium tianshanense and Methylobacterium nodulans. Listia angolensis formed effective nodules only with species of Microvirga. Listia bainesii nodulated only with pigmented Methylobacterium. Five lineages of nodA were found. Listia angolensis and L. bainesii formed lupinoid nodules, whereas nodules of Leobordea and Lotononis s.s. species were indeterminate. All effective nodules contained uniformly infected central tissue. Listia angolensis and L. bainesii nodule initials occurred on the border of the hypocotyl and along the tap root, and nodule primordia developed in the outer cortical layer. Neither root hair curling nor infection threads were seen. CONCLUSIONS: Two specificity groups occur within Lotononis s.l.: Listia species are symbiotically specific, while species of Leobordea and Lotononis s.s. are generally promiscuous and interact with rhizobia of diverse chromosomal and symbiotic lineages. The seasonally waterlogged habitat of Listia species may favour the development of symbiotic specificity.


Assuntos
Fabaceae/microbiologia , Rhizobium/fisiologia , Simbiose/fisiologia , África Austral , Bradyrhizobium/genética , Bradyrhizobium/fisiologia , Genes Bacterianos , Methylobacteriaceae/genética , Methylobacteriaceae/fisiologia , Methylobacterium/genética , Methylobacterium/fisiologia , Fixação de Nitrogênio/genética , Filogenia , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Especificidade da Espécie
7.
Int J Syst Evol Microbiol ; 63(Pt 11): 3944-3949, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23710046

RESUMO

Two strains of Gram-stain-negative, rod-shaped bacteria were isolated from root nodules of the South African legume Rhynchosia ferulifolia and authenticated on this host. Based on phylogenetic analysis of the 16S rRNA gene, strains WSM3930 and WSM3937(T) belonged to the genus Burkholderia, with the highest degree of sequence similarity to Burkholderia terricola (98.84 %). Additionally, the housekeeping genes gyrB and recA were analysed since 16S rRNA gene sequences are highly similar between closely related species of the genus Burkholderia. The results obtained for both housekeeping genes, gyrB and recA, showed the highest degree of sequence similarity of the novel strains towards Burkholderia caledonica LMG 19076(T) (94.2 % and 94.5 %, respectively). Chemotaxonomic data, including fatty acid profiles and respiratory quinone data supported the assignment of strains WSM3930 and WSM3937(T) to the genus Burkholderia. DNA-DNA hybridizations, and physiological and biochemical tests allowed genotypic and phenotypic differentiation of strains WSM3930 and WSM3937(T) from the most closely related species of the genus Burkholderia with validly published names. We conclude, therefore, that these strains represent a novel species for which the name Burkholderia rhynchosiae sp. nov. is proposed, with strain WSM3937(T) ( = LMG 27174(T) = HAMBI 3354(T)) as the type strain.


Assuntos
Burkholderia/classificação , Fabaceae/microbiologia , Filogenia , Nódulos Radiculares de Plantas/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , Burkholderia/genética , Burkholderia/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Genes Bacterianos , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , África do Sul , Ubiquinona/química
8.
Int J Syst Evol Microbiol ; 63(Pt 11): 3950-3957, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23710047

RESUMO

Seven Gram-stain-negative, rod-shaped bacteria were isolated from Lebeckia ambigua root nodules and authenticated on this host. Based on the 16S rRNA gene phylogeny, they were shown to belong to the genus Burkholderia, with the representative strain WSM5005(T) being most closely related to Burkholderia tuberum (98.08 % sequence similarity). Additionally, these strains formed a distinct group in phylogenetic trees based on the housekeeping genes gyrB and recA. Chemotaxonomic data including fatty acid profiles and analysis of respiratory quinones supported the assignment of the strains to the genus Burkholderia. Results of DNA-DNA hybridizations, and physiological and biochemical tests allowed genotypic and phenotypic differentiation of our strains from the closest species of the genus Burkholderia with a validly published name. Therefore, these strains represent a novel species for which the name Burkholderia sprentiae sp. nov. (type strain WSM5005(T) = LMG 27175(T) = HAMBI 3357(T)) is proposed.


Assuntos
Burkholderia/classificação , Fabaceae/microbiologia , Filogenia , Nódulos Radiculares de Plantas/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , Burkholderia/genética , Burkholderia/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Genótipo , Funções Verossimilhança , Dados de Sequência Molecular , Hibridização de Ácido Nucleico/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , África do Sul , Ubiquinona/química
9.
Plant Soil ; 487(1-2): 61-77, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37333056

RESUMO

Background and Aims: Inoculation of legumes with effective N2-fixing rhizobia is a common practice to improve farming profitability and sustainability. To succeed, inoculant rhizobia must overcome competition for nodulation by resident soil rhizobia that fix N2 ineffectively. In Kenya, where Phaseolus vulgaris (common bean) is inoculated with highly effective Rhizobium tropici CIAT899 from Colombia, response to inoculation is low, possibly due to competition from ineffective resident soil rhizobia. Here, we evaluate the competitiveness of CIAT899 against diverse rhizobia isolated from cultivated Kenyan P. vulgaris. Methods: The ability of 28 Kenyan P. vulgaris strains to nodulate this host when co-inoculated with CIAT899 was assessed. Rhizosphere competence of a subset of strains and the ability of seed inoculated CIAT899 to nodulate P. vulgaris when sown into soil with pre-existing populations of rhizobia was analyzed. Results: Competitiveness varied widely, with only 27% of the test strains more competitive than CIAT899 at nodulating P. vulgaris. While competitiveness did not correlate with symbiotic effectiveness, five strains were competitive against CIAT899 and symbiotically effective. In contrast, rhizosphere competence strongly correlated with competitiveness. Soil rhizobia had a position-dependent numerical advantage, outcompeting seed-inoculated CIAT899 for nodulation of P. vulgaris, unless the resident strain was poorly competitive. Conclusion: Suboptimally effective rhizobia can outcompete CIAT899 for nodulation of P. vulgaris. If these strains are widespread in Kenyan soils, they may largely explain the poor response to inoculation. The five competitive and effective strains characterized here are candidates for inoculant development and may prove better adapted to Kenyan conditions than CIAT899.

10.
Funct Plant Biol ; 50(5): 378-389, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36973638

RESUMO

Growing a high-value crop such as industrial hemp (Cannabis sativa L.) in post-mining environments is economically and environmentally attractive but faces a range of biotic and abiotic challenges. An opportunity to investigate the cultivation of C. sativa presented itself as part of post-mining activities on Christmas Island (Australia) to profitably utilise disused phosphate (PS) quarries. Challenges to plant growth and cadmium (Cd) uptake were addressed in this study using potted plants under fully controlled conditions in a growth chamber. A complete nutritional spectrum, slow-release fertiliser was applied to all plants as a control treatment, and two levels of rock PS dust, a waste product of PS mining that contains 35% phosphorus (P) and 40ppm of naturally occurring Cd, were applied at 54 and 162gL-1 . After 12weeks, control plants (no PS dust) significantly differed in phenological development, with no flower production, lower aboveground biomass and reduced photosynthesis efficiency than those with P applied as rock dust. Compared with the controls, the 54gL-1 level of P dust increased shoot biomass by 38%, while 162gL-1 increased shoot biomass by 85%. The concentration of Δ9 -tetrahydrocannabinol also increased with the higher P levels. Cd uptake from PS dust by C. sativa was substantial and warrants further investigation. However, there was no increase in Cd content between the 54 and 162gL-1 application rates in seed and leaf. Results indicate that hemp could become a high-value crop on Christmas Island, with the readily available rock PS dust providing a source of P.


Assuntos
Canabinoides , Cannabis , Cannabis/fisiologia , Fosfatos , Cádmio , Poeira , Clima Tropical
11.
BMC Genomics ; 13: 318, 2012 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-22805587

RESUMO

BACKGROUND: In the last 30 years, a number of DNA fingerprinting methods such as RFLP, RAPD, AFLP, SSR, DArT, have been extensively used in marker development for molecular plant breeding. However, it remains a daunting task to identify highly polymorphic and closely linked molecular markers for a target trait for molecular marker-assisted selection. The next-generation sequencing (NGS) technology is far more powerful than any existing generic DNA fingerprinting methods in generating DNA markers. In this study, we employed a grain legume crop Lupinus angustifolius (lupin) as a test case, and examined the utility of an NGS-based method of RAD (restriction-site associated DNA) sequencing as DNA fingerprinting for rapid, cost-effective marker development tagging a disease resistance gene for molecular breeding. RESULTS: Twenty informative plants from a cross of RxS (disease resistant x susceptible) in lupin were subjected to RAD single-end sequencing by multiplex identifiers. The entire RAD sequencing products were resolved in two lanes of the 16-lanes per run sequencing platform Solexa HiSeq2000. A total of 185 million raw reads, approximately 17 Gb of sequencing data, were collected. Sequence comparison among the 20 test plants discovered 8207 SNP markers. Filtration of DNA sequencing data with marker identification parameters resulted in the discovery of 38 molecular markers linked to the disease resistance gene Lanr1. Five randomly selected markers were converted into cost-effective, simple PCR-based markers. Linkage analysis using marker genotyping data and disease resistance phenotyping data on a F8 population consisting of 186 individual plants confirmed that all these five markers were linked to the R gene. Two of these newly developed sequence-specific PCR markers, AnSeq3 and AnSeq4, flanked the target R gene at a genetic distance of 0.9 centiMorgan (cM), and are now replacing the markers previously developed by a traditional DNA fingerprinting method for marker-assisted selection in the Australian national lupin breeding program. CONCLUSIONS: We demonstrated that more than 30 molecular markers linked to a target gene of agronomic trait of interest can be identified from a small portion (1/8) of one sequencing run on HiSeq2000 by applying NGS based RAD sequencing in marker development. The markers developed by the strategy described in this study are all co-dominant SNP markers, which can readily be converted into high throughput multiplex format or low-cost, simple PCR-based markers desirable for large scale marker implementation in plant breeding programs. The high density and closely linked molecular markers associated with a target trait help to overcome a major bottleneck for implementation of molecular markers on a wide range of germplasm in breeding programs. We conclude that application of NGS based RAD sequencing as DNA fingerprinting is a very rapid and cost-effective strategy for marker development in molecular plant breeding. The strategy does not require any prior genome knowledge or molecular information for the species under investigation, and it is applicable to other plant species.


Assuntos
Colletotrichum/fisiologia , Embaralhamento de DNA/métodos , Resistência à Doença/genética , Lupinus/genética , Lupinus/microbiologia , Doenças das Plantas/genética , Análise de Sequência de DNA/métodos , Sequência de Bases , Genes de Plantas/genética , Estudos de Associação Genética , Ligação Genética , Marcadores Genéticos , Endogamia , Doenças das Plantas/microbiologia , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único/genética , Recombinação Genética/genética , Reprodutibilidade dos Testes , Mapeamento por Restrição
12.
Int J Syst Evol Microbiol ; 62(Pt 11): 2579-2588, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22199210

RESUMO

Strains of Gram-negative, rod-shaped, non-spore-forming bacteria were isolated from nitrogen-fixing nodules of the native legumes Listia angolensis (from Zambia) and Lupinus texensis (from Texas, USA). Phylogenetic analysis of the 16S rRNA gene showed that the novel strains belong to the genus Microvirga, with ≥ 96.1% sequence similarity with type strains of this genus. The closest relative of the representative strains Lut6(T) and WSM3557(T) was Microvirga flocculans TFB(T), with 97.6-98.0% similarity, while WSM3693(T) was most closely related to Microvirga aerilata 5420S-16(T), with 98.8% similarity. Analysis of the concatenated sequences of four housekeeping gene loci (dnaK, gyrB, recA and rpoB) and cellular fatty acid profiles confirmed the placement of Lut6(T), WSM3557(T) and WSM3693(T) within the genus Microvirga. DNA-DNA relatedness values, and physiological and biochemical tests allowed genotypic and phenotypic differentiation of Lut6(T), WSM3557(T) and WSM3693(T) from each other and from other Microvirga species with validly published names. The nodA sequence of Lut6(T) was placed in a clade that contained strains of Rhizobium, Mesorhizobium and Sinorhizobium, while the 100% identical nodA sequences of WSM3557(T) and WSM3693(T) clustered with Bradyrhizobium, Burkholderia and Methylobacterium strains. Concatenated sequences for nifD and nifH show that the sequences of Lut6(T), WSM3557(T) and WSM3693(T) were most closely related to that of Rhizobium etli CFN42(T) nifDH. On the basis of genotypic, phenotypic and DNA relatedness data, three novel species of Microvirga are proposed: Microvirga lupini sp. nov. (type strain Lut6(T) =LMG 26460(T) =HAMBI 3236(T)), Microvirga lotononidis sp. nov. (type strain WSM3557(T) =LMG 26455(T) =HAMBI 3237(T)) and Microvirga zambiensis sp. nov. (type strain WSM3693(T) =LMG 26454(T) =HAMBI 3238(T)).


Assuntos
Fabaceae/microbiologia , Methylobacteriaceae/classificação , Filogenia , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Ácidos Graxos/análise , Methylobacteriaceae/genética , Methylobacteriaceae/isolamento & purificação , Dados de Sequência Molecular , Fixação de Nitrogênio , Nodulação , Raízes de Plantas/microbiologia , RNA Ribossômico 16S/genética , Texas , Zâmbia
13.
J Cannabis Res ; 4(1): 51, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36138416

RESUMO

BACKGROUND: Hemp (Cannabis sativa L.) is a producer of cannabinoids. These organic compounds are of increasing interest due to their potential applications in the medicinal field. Advances in analytical methods of identifying and quantifying these molecules are needed. METHOD: This study describes a new method of cannabinoid separation from plant material using gas chromatography-mass spectrometry (GC-MS) as the analytical tool to detect low abundance cannabinoids that will likely have implications for future therapeutical treatments. A novel approach was adopted to separate trichomes from plant material to analyse cannabinoids of low abundance not observed in raw plant extract. Required plant sample used for analysis was greatly reduced compared to other methods. Derivatisation method was simplified and deconvolution software was utilised to recognise unknown cannabinoid compounds of low abundance. RESULTS: The method produces well-separated spectra and allows the detection of major and minor cannabinoids. Ten cannabinoids that had available standards could be identified and quantified and numerous unidentified cannabinoids or pathway intermediates based on GC-MS spectra similarities could be extracted and analysed simultaneously with this method. CONCLUSIONS: This is a rapid novel extraction and analytical method from plant material that can identify major and minor cannabinoids using a simple technique. The method will be of use to future researchers seeking to study the multitude of cannabinoids whose values are currently not understood.

14.
Arch Microbiol ; 191(4): 311-8, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19152052

RESUMO

The South African legumes Lotononis bainesii, L. listii and L. solitudinis are specifically nodulated by highly effective, pink-pigmented bacteria that are most closely related to Methylobacterium nodulans on the basis of 16S rRNA gene homology. Methylobacterium spp. are characterized by their ability to utilize methanol and other C(1) compounds, but 11 Lotononis isolates neither grew on methanol as a sole carbon source nor were able to metabolize it. No product was obtained for PCR amplification of mxaF, the gene encoding the large subunit of methanol dehydrogenase. Searches for methylotrophy genes in the sequenced genome of Methylobacterium sp. 4-46, isolated from L. bainesii, indicate that the inability to utilize methanol may be due to the absence of the mxa operon. While methylotrophy appears to contribute to the effectiveness of the Crotalaria/M. nodulans symbiosis, our results indicate that the ability to utilize methanol is not a factor in the Lotononis/Methylobacterium symbiosis.


Assuntos
Fabaceae/microbiologia , Metanol/metabolismo , Methylobacterium/isolamento & purificação , Nódulos Radiculares de Plantas/microbiologia , Oxirredutases do Álcool/genética , Meios de Cultura , Genes Bacterianos , Genes de RNAr , Genoma Bacteriano , Methylobacterium/genética , Methylobacterium/crescimento & desenvolvimento , Methylobacterium/metabolismo , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , África do Sul , Especificidade da Espécie , Simbiose
15.
New Phytol ; 179(1): 62-66, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18422896

RESUMO

Medicago truncatula (barrel medic) A17 is currently being sequenced as a model legume, complementing the sequenced root nodule bacterial strain Sinorhizobium meliloti 1021 (Sm1021). In this study, the effectiveness of the Sm1021-M. truncatula symbiosis at fixing N(2) was evaluated. N(2) fixation effectiveness was examined with eight Medicago species and three accessions of M. truncatula with Sm1021 and two other Sinorhizobium strains. Plant shoot dry weights, plant nitrogen content and nodule distribution, morphology and number were analysed. Compared with nitrogen-fed controls, Sm1021 was ineffective or partially effective on all hosts tested (excluding M. sativa), as measured by reduced dry weights and shoot N content. Against an effective strain, Sm1021 on M. truncatula accessions produced more nodules, which were small, pale, more widely distributed on the root system and with fewer infected cells. The Sm1021-M. truncatula symbiosis is poorly matched for N(2) fixation and the strain could possess broader N(2) fixation deficiencies. A possible origin for this reduction in effectiveness is discussed. An alternative sequenced strain, effective at N(2) fixation on M. truncatula A17, is Sinorhizobium medicae WSM419.


Assuntos
Medicago truncatula/microbiologia , Fixação de Nitrogênio/fisiologia , Sinorhizobium meliloti/metabolismo , Simbiose , Medicago truncatula/anatomia & histologia , Medicago truncatula/crescimento & desenvolvimento , Modelos Biológicos , Dados de Sequência Molecular , Brotos de Planta/anatomia & histologia , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/microbiologia , Nódulos Radiculares de Plantas/anatomia & histologia , Nódulos Radiculares de Plantas/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Sinorhizobium meliloti/genética
16.
Syst Appl Microbiol ; 41(4): 291-299, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29571921

RESUMO

Phaseolus vulgaris (common bean) was introduced to Kenya several centuries ago but the rhizobia that nodulate it in the country remain poorly characterised. To address this gap in knowledge, 178 isolates recovered from the root nodules of P. vulgaris cultivated in Kenya were genotyped stepwise by the analysis of genomic DNA fingerprints, PCR-RFLP and 16S rRNA, atpD, recA and nodC gene sequences. Results indicated that P. vulgaris in Kenya is nodulated by at least six Rhizobium genospecies, with most of the isolates belonging to Rhizobium phaseoli and a possibly novel Rhizobium species. Infrequently, isolates belonged to Rhizobium paranaense, Rhizobium leucaenae, Rhizobium sophoriradicis and Rhizobium aegyptiacum. Despite considerable core-gene heterogeneity among the isolates, only four nodC gene alleles were observed indicating conservation within this gene. Testing of the capacity of the isolates to fix nitrogen (N2) in symbiosis with P. vulgaris revealed wide variations in effectiveness, with ten isolates comparable to Rhizobium tropici CIAT 899, a commercial inoculant strain for P. vulgaris. In addition to unveiling effective native rhizobial strains with potential as inoculants in Kenya, this study demonstrated that Kenyan soils harbour diverse P. vulgaris-nodulating rhizobia, some of which formed phylogenetic clusters distinct from known lineages. The native rhizobia differed by site, suggesting that field inoculation of P. vulgaris may need to be locally optimised.


Assuntos
Phaseolus/microbiologia , Rhizobium , Nódulos Radiculares de Plantas/microbiologia , Proteínas de Bactérias/genética , DNA Bacteriano/genética , Quênia , N-Acetilglucosaminiltransferases/genética , Fixação de Nitrogênio/fisiologia , Filogenia , Nodulação/fisiologia , Polimorfismo de Fragmento de Restrição , RNA Ribossômico 16S/genética , Recombinases Rec A/genética , Rhizobium/classificação , Rhizobium/genética , Rhizobium/isolamento & purificação , Análise de Sequência de DNA , Microbiologia do Solo , Simbiose/genética , Fatores de Transcrição/genética
17.
Sci Total Environ ; 625: 1-7, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29278826

RESUMO

Globally, land-use transition from mining to agriculture is becoming increasingly attractive and necessary for many reasons. However, low levels of necessary plant nutrients, and high levels of heavy metals, can hamper plant growth, affecting yield, and potentially, food safety. In post-phosphate mining substrates, for example, nitrogen (N) is a key limiting nutrient, and, although legumes are planted prior to cereals, N supplementation is still necessary. We undertook two field trials on Christmas Island, Australia, to determine whether Sorghum bicolor could be grown successfully in a post-phosphate mining substrate. The first trial investigated N (urea) demand (amount of N required for adequate crop growth) for S. bicolor, and whether N addition could reduce the naturally occurring cadmium (Cd) concentrations in the crop. The second trial examined whether slow release nitrogen fertilizers (SRF) could replace urea to increase biomass and reduce Cd concentrations. Our first trial demonstrated that S. bicolor has a high N demand, with the highest biomass being recorded in the 160kg/ha urea treatment. However, plants treated with 80, 120 and 160kg/ha were not significantly different from one another. After 7weeks of growth, leaf Cd concentrations were significantly lower for all urea treatments compared with the control plants. However, after 23weeks, seed Cd concentrations did not differ across treatments. Our second trial demonstrated that the application of SRF (Macracote® and Sulsync®) and 160kg/ha urea significantly increased biomass above the control plants. There was, however, no treatment response in terms of Cd or N concentrations in the seed at final harvest. Thus, we have shown that N is currently critical for S. bicolor, even following legume cropping, and that high biomass and a significant reduction in Cd can be attained with appropriate levels of urea. Our work has important implications for cereal growth and food safety in post-mining agriculture.


Assuntos
Agricultura , Cádmio/química , Fertilizantes , Mineração , Sorghum/crescimento & desenvolvimento , Ureia/metabolismo , Austrália , Fosfatos , Solo , Poluentes do Solo/química , Sorghum/química
18.
Syst Appl Microbiol ; 41(6): 641-649, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30145046

RESUMO

Given that phosphate supplies may diminish and become uneconomic to mine after 2020, there is a compelling need to develop alternative industries to support the population on Christmas Island. Former mine sites could be turned into productive agricultural land, however, large-scale commercial agriculture has never been attempted, and, given the uniqueness of the island, the diversity of rhizobia prior to introducing legumes needed evaluation. Therefore, 84 rhizobia isolates were obtained from nine different hosts, both crop and introduced legumes, located at seven sites across the island. Based on 16S rRNA and recA gene sequence analysis, the isolates grouped into 13 clades clustering within the genus Bradyrhizobium, Ensifer, Cupriavidus and Rhizobium. According to the sequences of their symbiosis genes nodC and nifH, the isolates were classified into 12 and 11 clades, respectively, and clustered closest to tropical or crop legume isolates. Moreover, the symbiosis gene phylogeny and Multi Locus Sequence Analysis gene phylogeny suggested vertical transmission in the Alpha-rhizobia but horizontal transmission within the Beta-rhizobia. Furthermore, this study provides evidence of a large diversity of endemic rhizobia associated with both crop and introduced legumes, and highlights the necessity of inoculation for common bean, chickpea and soybean on the Island.


Assuntos
Bradyrhizobiaceae/classificação , Fabaceae/microbiologia , Mineração , Rhizobiaceae/classificação , Nódulos Radiculares de Plantas/microbiologia , Agricultura , Austrália , Bradyrhizobiaceae/genética , Bradyrhizobiaceae/isolamento & purificação , DNA Bacteriano/genética , Genes Bacterianos , Fosfatos , Filogenia , RNA Ribossômico 16S/genética , Rhizobiaceae/genética , Rhizobiaceae/isolamento & purificação , Simbiose
19.
Genome Announc ; 4(3)2016 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-27284134

RESUMO

We report the complete genome sequence of Mesorhizobium ciceri bv. biserrulae strain WSM1284, a nitrogen-fixing microsymbiont of the pasture legume Biserrula pelecinus The genome consists of 6.88 Mb distributed between a single chromosome (6.33 Mb) and a single plasmid (0.55 Mb).

20.
Genome Announc ; 4(3)2016 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-27284135

RESUMO

We report the complete genome sequence of Mesorhizobium ciceri strain CC1192, an efficient nitrogen-fixing microsymbiont of Cicer arietinum (chickpea). The genome consists of 6.94 Mb distributed between a single chromosome (6.29 Mb) and a plasmid (0.65 Mb).

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa