Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Cell ; 184(5): 1348-1361.e22, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33636128

RESUMO

Clonal hematopoiesis, a condition in which individual hematopoietic stem cell clones generate a disproportionate fraction of blood leukocytes, correlates with higher risk for cardiovascular disease. The mechanisms behind this association are incompletely understood. Here, we show that hematopoietic stem cell division rates are increased in mice and humans with atherosclerosis. Mathematical analysis demonstrates that increased stem cell proliferation expedites somatic evolution and expansion of clones with driver mutations. The experimentally determined division rate elevation in atherosclerosis patients is sufficient to produce a 3.5-fold increased risk of clonal hematopoiesis by age 70. We confirm the accuracy of our theoretical framework in mouse models of atherosclerosis and sleep fragmentation by showing that expansion of competitively transplanted Tet2-/- cells is accelerated under conditions of chronically elevated hematopoietic activity. Hence, increased hematopoietic stem cell proliferation is an important factor contributing to the association between cardiovascular disease and clonal hematopoiesis.


Assuntos
Aterosclerose/patologia , Hematopoiese Clonal , Células-Tronco Hematopoéticas/patologia , Envelhecimento/patologia , Animais , Apolipoproteínas E/genética , Aterosclerose/genética , Medula Óssea/metabolismo , Proliferação de Células , Evolução Clonal , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Privação do Sono/patologia
2.
Immunity ; 51(5): 899-914.e7, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31732166

RESUMO

Myocardial infarction, stroke, and sepsis trigger systemic inflammation and organism-wide complications that are difficult to manage. Here, we examined the contribution of macrophages residing in vital organs to the systemic response after these injuries. We generated a comprehensive catalog of changes in macrophage number, origin, and gene expression in the heart, brain, liver, kidney, and lung of mice with myocardial infarction, stroke, or sepsis. Predominantly fueled by heightened local proliferation, tissue macrophage numbers increased systemically. Macrophages in the same organ responded similarly to different injuries by altering expression of tissue-specific gene sets. Preceding myocardial infarction improved survival of subsequent pneumonia due to enhanced bacterial clearance, which was caused by IFNÉ£ priming of alveolar macrophages. Conversely, EGF receptor signaling in macrophages exacerbated inflammatory lung injury. Our data suggest that local injury activates macrophages in remote organs and that targeting macrophages could improve resilience against systemic complications following myocardial infarction, stroke, and sepsis.


Assuntos
Suscetibilidade a Doenças , Macrófagos/imunologia , Macrófagos/metabolismo , Animais , Biomarcadores , Contagem de Células , Suscetibilidade a Doenças/imunologia , Receptores ErbB/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Isquemia/etiologia , Isquemia/metabolismo , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Camundongos , Células Musculares/imunologia , Células Musculares/metabolismo , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/metabolismo , Especificidade de Órgãos/genética , Especificidade de Órgãos/imunologia , Pneumonia/etiologia , Pneumonia/metabolismo , Pneumonia/patologia
3.
Blood ; 142(7): 658-674, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37267513

RESUMO

Myeloid cell heterogeneity is known, but whether it is cell-intrinsic or environmentally-directed remains unclear. Here, an inducible/reversible system pausing myeloid differentiation allowed the definition of clone-specific functions that clustered monocytes into subsets with distinctive molecular features. These subsets were orthogonal to the classical/nonclassical categorization and had inherent, restricted characteristics that did not shift under homeostasis, after irradiation, or with infectious stress. Rather, their functional fate was constrained by chromatin accessibility established at or before the granulocyte-monocyte or monocyte-dendritic progenitor level. Subsets of primary monocytes had differential ability to control distinct infectious agents in vivo. Therefore, monocytes are a heterogeneous population of functionally restricted subtypes defined by the epigenome of their progenitors that are differentially selected by physiologic challenges with limited plasticity to transition from one subset to another.


Assuntos
Granulócitos , Monócitos , Células Progenitoras Mieloides , Epigenoma , Epigênese Genética , Diferenciação Celular/genética
4.
Nature ; 566(7744): 383-387, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30760925

RESUMO

Sleep is integral to life1. Although insufficient or disrupted sleep increases the risk of multiple pathological conditions, including cardiovascular disease2, we know little about the cellular and molecular mechanisms by which sleep maintains cardiovascular health. Here we report that sleep regulates haematopoiesis and protects against atherosclerosis in mice. We show that mice subjected to sleep fragmentation produce more Ly-6Chigh monocytes, develop larger atherosclerotic lesions and produce less hypocretin-a stimulatory and wake-promoting neuropeptide-in the lateral hypothalamus. Hypocretin controls myelopoiesis by restricting the production of CSF1 by hypocretin-receptor-expressing pre-neutrophils in the bone marrow. Whereas hypocretin-null and haematopoietic hypocretin-receptor-null mice develop monocytosis and accelerated atherosclerosis, sleep-fragmented mice with either haematopoietic CSF1 deficiency or hypocretin supplementation have reduced numbers of circulating monocytes and smaller atherosclerotic lesions. Together, these results identify a neuro-immune axis that links sleep to haematopoiesis and atherosclerosis.


Assuntos
Aterosclerose/prevenção & controle , Hematopoese/fisiologia , Sono/fisiologia , Animais , Antígenos Ly/metabolismo , Aterosclerose/metabolismo , Aterosclerose/patologia , Células da Medula Óssea/metabolismo , Feminino , Hematopoese/efeitos dos fármacos , Região Hipotalâmica Lateral/metabolismo , Fator Estimulador de Colônias de Macrófagos/biossíntese , Fator Estimulador de Colônias de Macrófagos/deficiência , Fator Estimulador de Colônias de Macrófagos/metabolismo , Masculino , Camundongos , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Mielopoese/efeitos dos fármacos , Neutrófilos/metabolismo , Receptores de Orexina/deficiência , Receptores de Orexina/metabolismo , Orexinas/biossíntese , Orexinas/deficiência , Orexinas/metabolismo , Orexinas/farmacologia , Sono/efeitos dos fármacos , Privação do Sono/metabolismo , Privação do Sono/fisiopatologia , Privação do Sono/prevenção & controle
5.
Basic Res Cardiol ; 118(1): 36, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37656254

RESUMO

Cardiotoxicity is a major complication of anthracycline therapy that negatively impacts prognosis. Effective pharmacotherapies for prevention of anthracycline-induced cardiomyopathy (AICM) are currently lacking. Increased plasma levels of the neutrophil-derived enzyme myeloperoxidase (MPO) predict occurrence of AICM in humans. We hypothesized that MPO release causally contributes to AICM. Mice intravenously injected with the anthracycline doxorubicin (DOX) exhibited higher neutrophil counts and MPO levels in the circulation and cardiac tissue compared to saline (NaCl)-treated controls. Neutrophil-like HL-60 cells exhibited increased MPO release upon exposition to DOX. DOX induced extensive nitrosative stress in cardiac tissue alongside with increased carbonylation of sarcomeric proteins in wildtype but not in Mpo-/- mice. Accordingly, co-treatment of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) with DOX and MPO aggravated loss of hiPSC-CM-contractility compared to DOX treatment alone. DOX-treated animals exhibited pronounced cardiac apoptosis and inflammation, which was attenuated in MPO-deficient animals. Finally, genetic MPO deficiency and pharmacological MPO inhibition protected mice from the development of AICM. The anticancer efficacy of DOX was unaffected by MPO deficiency. Herein we identify MPO as a critical mediator of AICM. We demonstrate that DOX induces cardiac neutrophil infiltration and release of MPO, which directly impairs cardiac contractility through promoting oxidation of sarcomeric proteins, cardiac inflammation and cardiomyocyte apoptosis. MPO thus emerges as a promising pharmacological target for prevention of AICM.


Assuntos
Cardiomiopatias , Células-Tronco Pluripotentes Induzidas , Peroxidase , Animais , Humanos , Camundongos , Antraciclinas/toxicidade , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/prevenção & controle , Doxorrubicina/toxicidade , Inflamação , Peroxidase/genética
6.
Basic Res Cardiol ; 117(1): 38, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35896846

RESUMO

Chronic kidney disease's prevalence rises globally. Whereas dialysis treatment replaces the kidney's filtering function and prolongs life, dreaded consequences in remote organs develop inevitably over time. Even milder reductions in kidney function not requiring replacement therapy associate with bacterial infections, cardiovascular and heart valve disease, which markedly limit prognosis in these patients. The array of complications is diverse and engages a wide gamut of cellular and molecular mechanisms. The innate immune system is profoundly and systemically altered in chronic kidney disease and, as a unifying element, partakes in many of the disease's complications. As such, a derailed immune system fuels cardiovascular disease progression but also elevates the propensity for serious bacterial infections. Recent data further point towards a role in developing calcific aortic valve stenosis. Here, we delineate the current state of knowledge on how chronic kidney disease affects innate immunity in cardiovascular organs and on a systemic level. We review the role of circulating myeloid cells, monocytes and neutrophils, resident macrophages, dendritic cells, ligands, and cellular pathways that are activated or suppressed when renal function is chronically impaired. Finally, we discuss myeloid cells' varying responses to uremia from a systems immunology perspective.


Assuntos
Insuficiência Renal Crônica , Uremia , Humanos , Inflamação , Leucócitos , Macrófagos , Insuficiência Renal Crônica/complicações , Uremia/complicações
7.
Circulation ; 142(3): 244-258, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32316750

RESUMO

BACKGROUND: Diabetes mellitus is a prevalent public health problem that affects about one-third of the US population and leads to serious vascular complications with increased risk for coronary artery disease. How bone marrow hematopoiesis contributes to diabetes mellitus complications is incompletely understood. We investigated the role of bone marrow endothelial cells in diabetic regulation of inflammatory myeloid cell production. METHODS: In 3 types of mouse diabetes mellitus, including streptozotocin, high-fat diet, and genetic induction using leptin-receptor-deficient db/db mice, we assayed leukocytes, hematopoietic stem and progenitor cells (HSPC). In addition, we investigated bone marrow endothelial cells with flow cytometry and expression profiling. RESULTS: In diabetes mellitus, we observed enhanced proliferation of HSPC leading to augmented circulating myeloid cell numbers. Analysis of bone marrow niche cells revealed that endothelial cells in diabetic mice expressed less Cxcl12, a retention factor promoting HSPC quiescence. Transcriptome-wide analysis of bone marrow endothelial cells demonstrated enrichment of genes involved in epithelial growth factor receptor (Egfr) signaling in mice with diet-induced diabetes mellitus. To explore whether endothelial Egfr plays a functional role in myelopoiesis, we generated mice with endothelial-specific deletion of Egfr (Cdh5CreEgfrfl/fl). We found enhanced HSPC proliferation and increased myeloid cell production in Cdh5CreEgfrfl/fl mice compared with wild-type mice with diabetes mellitus. Disrupted Egfr signaling in endothelial cells decreased their expression of the HSPC retention factor angiopoietin-1. We tested the functional relevance of these findings for wound healing and atherosclerosis, both implicated in complications of diabetes mellitus. Inflammatory myeloid cells accumulated more in skin wounds of diabetic Cdh5CreEgfrfl/fl mice, significantly delaying wound closure. Atherosclerosis was accelerated in Cdh5CreEgfrfl/fl mice, leading to larger and more inflamed atherosclerotic lesions in the aorta. CONCLUSIONS: In diabetes mellitus, bone marrow endothelial cells participate in the dysregulation of bone marrow hematopoiesis. Diabetes mellitus reduces endothelial production of Cxcl12, a quiescence-promoting niche factor that reduces stem cell proliferation. We describe a previously unknown counterregulatory pathway, in which protective endothelial Egfr signaling curbs HSPC proliferation and myeloid cell production.


Assuntos
Células da Medula Óssea/metabolismo , Células Endoteliais/metabolismo , Mielopoese , Animais , Diabetes Mellitus Experimental , Modelos Animais de Doenças , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Masculino , Camundongos , Modelos Biológicos , Células Mieloides/metabolismo , Mielopoese/genética , Transdução de Sinais , Transcriptoma
8.
Circ Res ; 123(4): 415-427, 2018 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-29980569

RESUMO

RATIONALE: Inflammatory stress induced by exposure to bacterial lipopolysaccharide causes hematopoietic stem cell expansion in the bone marrow niche, generating a cellular immune response. As an integral component of the hematopoietic stem cell niche, the bone marrow vasculature regulates the production and release of blood leukocytes, which protect the host against infection but also fuel inflammatory diseases. OBJECTIVE: We aimed to develop imaging tools to explore vascular changes in the bone marrow niche during acute inflammation. METHODS AND RESULTS: Using the TLR (Toll-like receptor) ligand lipopolysaccharide as a prototypical danger signal, we applied multiparametric, multimodality and multiscale imaging to characterize how the bone marrow vasculature adapts when hematopoiesis boosts leukocyte supply. In response to lipopolysaccharide, ex vivo flow cytometry and histology showed vascular changes to the bone marrow niche. Specifically, proliferating endothelial cells gave rise to new vasculature in the bone marrow during hypoxic conditions. We studied these vascular changes with complementary intravital microscopy and positron emission tomography/magnetic resonance imaging. Fluorescence and positron emission tomography integrin αVß3 imaging signal increased during lipopolysaccharide-induced vascular remodeling. Vascular leakiness, quantified by albumin-based in vivo microscopy and magnetic resonance imaging, rose when neutrophils departed and hematopoietic stem and progenitor cells proliferated more vigorously. CONCLUSIONS: Introducing a tool set to image bone marrow either with cellular resolution or noninvasively within the entire skeleton, this work sheds light on angiogenic responses that accompany emergency hematopoiesis. Understanding and monitoring bone marrow vasculature may provide a key to unlock therapeutic targets regulating systemic inflammation.


Assuntos
Medula Óssea/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons/métodos , Nicho de Células-Tronco , Estresse Fisiológico , Animais , Medula Óssea/patologia , Células Progenitoras Endoteliais/citologia , Feminino , Inflamação/diagnóstico por imagem , Integrina alfaVbeta3/metabolismo , Lipopolissacarídeos/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Imagem Multimodal/métodos
9.
Arterioscler Thromb Vasc Biol ; 36(9): 1802-8, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27470513

RESUMO

OBJECTIVE: Atherosclerosis is a chronic disease characterized by lipid accumulation in the arterial wall. After myocardial infarction (MI), atherosclerotic plaques are infiltrated by inflammatory myeloid cells that aggravate the disease and increase the risk of secondary myocardial ischemia. Splenic myelopoiesis provides a steady flow of myeloid cells to inflamed atherosclerotic lesions after MI. Therefore, targeting myeloid cell production in the spleen could ameliorate increased atherosclerotic plaque inflammation after MI. APPROACH AND RESULTS: Here we show that MI increases splenic myelopoiesis by driving hematopoietic stem and progenitor cells into the cell cycle. In an atherosclerotic mouse model, E-selectin inhibition decreased hematopoietic stem and progenitor cell proliferation in the spleen after MI. This led to reduced extramedullary myelopoiesis and decreased myeloid cell accumulation in atherosclerotic lesions. Finally, we observed stable atherosclerotic plaque features, including smaller plaque size, reduced necrotic core area, and thicker fibrous cap after E-selectin inhibition. CONCLUSIONS: Inhibiting E-selectin attenuated inflammation in atherosclerotic plaques, likely by reducing leukocyte recruitment into plaques and by mitigating hematopoietic stem and progenitor cell activation in the spleen of mice with MI.


Assuntos
Doenças da Aorta/tratamento farmacológico , Aterosclerose/tratamento farmacológico , Selectina E/metabolismo , Células-Tronco Hematopoéticas/efeitos dos fármacos , Hipercolesterolemia/metabolismo , Mielopoese/efeitos dos fármacos , Infarto do Miocárdio/tratamento farmacológico , Baço/efeitos dos fármacos , Animais , Doenças da Aorta/genética , Doenças da Aorta/metabolismo , Doenças da Aorta/patologia , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Proliferação de Células/efeitos dos fármacos , Dieta Hiperlipídica , Modelos Animais de Doenças , Fibrose , Células-Tronco Hematopoéticas/metabolismo , Hipercolesterolemia/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Necrose , Placa Aterosclerótica , Transdução de Sinais/efeitos dos fármacos , Baço/metabolismo
11.
J Mol Cell Cardiol ; 66: 126-32, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24286707

RESUMO

The role of endocannabinoids such as anandamide during atherogenesis remains largely unknown. Fatty acid amide hydrolase (FAAH) represents the key enzyme in anandamide degradation, and its inhibition is associated with subsequent higher levels of anandamide. Here, we tested whether selective inhibition of FAAH influences the progression of atherosclerosis in mice. Selective inhibition of FAAH using URB597 resulted in significantly increased plasma levels of anandamide compared to control, as assessed by mass spectrometry experiments in mice. Apolipoprotein E-deficient (ApoE(-/-)) mice were fed a high-fat, cholesterol-rich diet to induce atherosclerotic conditions. Simultaneously, mice received either the pharmacological FAAH inhibitor URB597 1mg/kg body weight (n=28) or vehicle (n=25) via intraperitoneal injection three times a week. After eight weeks, mice were sacrificed, and experiments were performed. Vascular superoxide generation did not differ between both groups, as measured by L012 assay. To determine whether selective inhibition of FAAH affects atherosclerotic plaque inflammation, immunohistochemical staining of the aortic root was performed. Atherosclerotic plaque formation, vascular macrophage accumulation, as well as vascular T cell infiltration did not differ between both groups. Interestingly, neutrophil cell accumulation was significantly increased in mice receiving URB597 compared to control. Vascular collagen structures in atherosclerotic plaques were significantly diminished in mice treated with URB597 compared to control, as assessed by picro-sirius-red staining. This was accompanied by an increased aortic expression of matrix metalloproteinase-9, as determined by quantitative RT-PCR and western blot analysis. Inhibition of fatty acid amide hydrolase does not influence plaque size but increases plaque vulnerability in mice.


Assuntos
Amidoidrolases/antagonistas & inibidores , Benzamidas/farmacologia , Carbamatos/farmacologia , Inibidores Enzimáticos/farmacologia , Placa Aterosclerótica/enzimologia , Amidoidrolases/genética , Amidoidrolases/metabolismo , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Ácidos Araquidônicos/sangue , Movimento Celular/efeitos dos fármacos , Dieta Hiperlipídica , Gorduras na Dieta/efeitos adversos , Endocanabinoides/sangue , Expressão Gênica , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Camundongos , Camundongos Knockout , Neutrófilos/efeitos dos fármacos , Neutrófilos/patologia , Placa Aterosclerótica/tratamento farmacológico , Placa Aterosclerótica/etiologia , Placa Aterosclerótica/patologia , Alcamidas Poli-Insaturadas/sangue , Superóxidos/metabolismo
12.
Front Immunol ; 15: 1360700, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38736886

RESUMO

Introduction: Myocardial infarction (MI) is a significant contributor to morbidity and mortality worldwide. Many individuals who survive the acute event continue to experience heart failure (HF), with inflammatory and healing processes post-MI playing a pivotal role. Polymorphonuclear neutrophils (PMN) and monocytes infiltrate the infarcted area, where PMN release high amounts of the heme enzyme myeloperoxidase (MPO). MPO has numerous inflammatory properties and MPO plasma levels are correlated with prognosis and severity of MI. While studies have focused on MPO inhibition and controlling PMN infiltration into the infarcted tissue, less is known on MPO's role in monocyte function. Methods and results: Here, we combined human data with mouse and cell studies to examine the role of MPO on monocyte activation and migration. We revealed a correlation between plasma MPO levels and monocyte activation in a patient study. Using a mouse model of MI, we demonstrated that MPO deficiency led to an increase in splenic monocytes and a decrease in cardiac monocytes compared to wildtype mice (WT). In vitro studies further showed that MPO induces monocyte migration, with upregulation of the chemokine receptor CCR2 and upregulation of inflammatory pathways identified as underlying mechanisms. Conclusion: Taken together, we identify MPO as a pro-inflammatory mediator of splenic monocyte recruitment and activation post-MI and provide mechanistic insight for novel therapeutic strategies after ischemic injury.


Assuntos
Monócitos , Infarto do Miocárdio , Peroxidase , Animais , Infarto do Miocárdio/imunologia , Infarto do Miocárdio/patologia , Infarto do Miocárdio/metabolismo , Peroxidase/metabolismo , Monócitos/imunologia , Monócitos/metabolismo , Humanos , Camundongos , Masculino , Movimento Celular , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Feminino , Neutrófilos/imunologia , Neutrófilos/metabolismo , Camundongos Knockout , Receptores CCR2/metabolismo , Pessoa de Meia-Idade
13.
Arterioscler Thromb Vasc Biol ; 32(8): 1925-35, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22701020

RESUMO

OBJECTIVE: Endothelial microparticles (EMP) are released from activated or apoptotic cells, but their effect on target cells and the exact way of incorporation are largely unknown. We sought to determine the uptake mechanism and the biological effect of EMP on endothelial and endothelial-regenerating cells. METHODS AND RESULTS: EMP were generated from starved endothelial cells and isolated by ultracentrifugation. Caspase 3 activity assay and terminal deoxynucleotidyl transferase dUTP nick end labeling assay showed that EMP protect target endothelial cells against apoptosis in a dose-dependent manner. Proteomic analysis was performed to identify molecules contained in EMP, which might be involved in EMP uptake. Expression of annexin I in EMP was found and confirmed by Western blot, whereas the corresponding receptor phosphatidylserine receptor was present on endothelial target cells. Silencing either annexin I on EMP or phosphatidylserine receptor on target cells using small interfering RNA showed that the uptake of EMP by human coronary artery endothelial cells is annexin I/phosphatidylserine receptor dependent. Annexin I-downregulated EMP abrogated the EMP-mediated protection against apoptosis of endothelial target cells. p38 activation was found to mediate camptothecin-induced apoptosis. Finally, human coronary artery endothelial cells pretreated with EMP inhibited camptothecin-induced p38 activation. CONCLUSIONS: EMP are incorporated by endothelial cells in an annexin I/phosphatidylserine receptor-dependent manner and protect target cells against apoptosis. Inhibition of p38 activity is involved in EMP-mediated protection against apoptosis.


Assuntos
Anexina A1/fisiologia , Apoptose , Micropartículas Derivadas de Células/fisiologia , Células Endoteliais/fisiologia , Receptores de Superfície Celular/fisiologia , Apoptose/efeitos dos fármacos , Camptotecina/farmacologia , Células Cultivadas , Humanos , Proteínas Quinases p38 Ativadas por Mitógeno/fisiologia
15.
J Cell Mol Med ; 16(11): 2777-88, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22697268

RESUMO

Microparticles (MP) are generated during a vast number of biological processes such as inflammation, cell activation and apoptosis. Increasing evidence points towards an important role of MP as intercellular messengers of biological information. During atherogenesis, monocytes infiltrate the vascular wall and foster inflammation, accompanied by the release of monocytic MP (mono-MP). To date, only little is known about the biological function of mono-MP in the vascular wall. Here, we investigated the role of mono-MP during atherogenesis. Mono-MP were generated by starvation of THP-1 monocytes and isolated by ultracentrifugation. To investigate whether mono-MP influence atherogenesis, ApoE(-/-) mice were fed a high-fat, cholesterol-rich diet for 8 weeks and simultaneously treated with mono-MP or vehicle twice a week. Mice treated with mono-MP showed significantly increased monocyte and T-cell infiltration into the vessel wall, as assessed by Moma-2 and CD3 staining, and enhanced plaque formation, as assessed by oil-red-O staining. However, atherosclerotic plaque composition was not influenced by mono-MP application. In vitro, incubation of mono-MP with murine macrophages and endothelial cells resulted in the uptake of calcein-labelled mono-MP. Mono-MP uptake initiated the generation of intracellular reactive oxygen species. Murine macrophages pre-treated with mono-MP showed significantly enhanced expression of CCR2, migration to MCP-1 and increased release of pro-inflammatory interleukin-6. Co-incubation of mono-MP with endothelial cells resulted in significantly increased expression of ICAM-1, as assessed by RT-PCR and ELISA. Mono-MP act as paracrine messengers that intensify inflammation during atherogenesis by stimulating vascular-bound and inflammatory cells in their vicinity.


Assuntos
Aterosclerose/fisiopatologia , Monócitos/fisiologia , Animais , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Aterosclerose/metabolismo , Pressão Sanguínea , Movimento Celular , Células Cultivadas , Colesterol/sangue , Colágeno/metabolismo , Dieta Hiperlipídica/efeitos adversos , Células Endoteliais/metabolismo , Frequência Cardíaca , Molécula 1 de Adesão Intercelular/metabolismo , Interleucina-6/metabolismo , Macrófagos/fisiologia , Camundongos , Camundongos Mutantes , Espécies Reativas de Oxigênio/metabolismo , Receptores CCR2/metabolismo , Linfócitos T/fisiologia , Vasculite/metabolismo , Vasculite/patologia
16.
Mol Cell Biochem ; 359(1-2): 25-31, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21755457

RESUMO

Atherosclerosis is a chronic inflammatory disease and represents the main cause of death in the industrialized world. Metabolites of the arachidonic acid derived from the 5-lipoxygenase pathway are known as leukotrienes that mediate various inflammatory processes during atherogenesis. Leukotriene B4 elicits the overexpression of several proinflammatory proteins, promotes chemotaxis and foam cell formation via BLT receptors. Currently, little is known about the implications of the BLT2 receptor in atherogenesis. Here, we tested whether selective inhibition of this receptor influences the progression of atherosclerosis in mice. Apolipoprotein-E deficient mice were fed a high-fat, cholesterol-rich diet to create atherosclerotic conditions (each group n=9). Simultaneously, mice received the pharmacologic BLT2 inhibition (Ly) by intraperitoneal injection every second day 5 mg/kg bw or vehicle. After 8 weeks, mice were killed and experiments were performed. Vascular superoxide release was diminished in mice treated with Ly compared with the control group (68±15 vs 131±20 RLU, P=0.01), as measured by L012 assay. Next, endothelial function was assessed by organ chamber experiments. Endothelial-dependent relaxation was improved in mice treated with the BLT2 receptor antagonist. To determine whether selective inhibition of the BLT2 receptor affects the atherosclerotic plaque growth, immunohistochemical stainings of the aortic root were performed. Oil red O staining revealed no significant differences between both groups (36±3% vs 38±3%). Monocyte infiltration into the vessel wall was analyzed using Moma-2 staining. No significant differences were observed between both groups (31±3% vs 34±2%). Selective inhibition of the BLT2 receptor in mice reduces the release of vascular reactive oxygen species and improves endothelial function in mice. Further experiments are necessary in order to obtain tissue-specific and mechanistical insights.


Assuntos
Endotélio Vascular/metabolismo , Antagonistas de Leucotrienos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Receptores do Leucotrieno B4/antagonistas & inibidores , Animais , Apolipoproteínas E/deficiência , Aterosclerose/etiologia , Aterosclerose/metabolismo , Movimento Celular , Endotélio Vascular/fisiologia , Camundongos , Camundongos Knockout , Monócitos , Espécies Reativas de Oxigênio/metabolismo
17.
Nat Cardiovasc Res ; 1(1): 28-44, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35747128

RESUMO

Abnormal hematopoiesis advances cardiovascular disease by generating excess inflammatory leukocytes that attack the arteries and the heart. The bone marrow niche regulates hematopoietic stem cell proliferation and hence the systemic leukocyte pool, but whether cardiovascular disease affects the hematopoietic organ's microvasculature is unknown. Here we show that hypertension, atherosclerosis and myocardial infarction (MI) instigate endothelial dysfunction, leakage, vascular fibrosis and angiogenesis in the bone marrow, altogether leading to overproduction of inflammatory myeloid cells and systemic leukocytosis. Limiting angiogenesis with endothelial deletion of Vegfr2 (encoding vascular endothelial growth factor (VEGF) receptor 2) curbed emergency hematopoiesis after MI. We noted that bone marrow endothelial cells assumed inflammatory transcriptional phenotypes in all examined stages of cardiovascular disease. Endothelial deletion of Il6 or Vcan (encoding versican), genes shown to be highly expressed in mice with atherosclerosis or MI, reduced hematopoiesis and systemic myeloid cell numbers in these conditions. Our findings establish that cardiovascular disease remodels the vascular bone marrow niche, stimulating hematopoiesis and production of inflammatory leukocytes.

18.
J Mol Cell Cardiol ; 51(6): 1007-14, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21884703

RESUMO

Low-dose oral tetrahydrocannabinol (THC) reduces progression of atherosclerosis in mice. THC activates central cannabinoid-1 receptors (CB1) with subsequent psychoactive effects as well as peripheral cannabinoid-2 receptors (CB2). In order to dissect the underlying mechanisms, we performed experiments under selective CB2 stimulation as well as after genetic disruption of the CB2 receptor. Atherosclerosis prone apolipoprotein E-deficient mice were crossed with cannabinoid receptor-2 deficient mice to obtain ApoE -/- CB2 -/- double knockout mice. After 8weeks of a high-cholesterol diet, immunohistochemical stainings of the aortic root revealed that vascular leukocyte infiltration in atherosclerotic plaques was accelerated in ApoE -/- CB2 -/- mice compared with ApoE -/- mice. This was accompanied by increased release of reactive oxygen species as measured using L012-enhanced chemiluminescence, and by decreased endothelial function as assessed in isolated aortic rings in organ chamber experiments. ApoE -/- mice treated with the selective CB2 agonist JWH 133 during a high-cholesterol diet showed decreased atherosclerotic lesion formation, improved endothelial function and reduced levels of reactive oxygen species. To assess whether CB2 expression in circulating cells influences atherosclerosis, irradiated ApoE -/- mice were repopulated with bone marrow-derived cells from ApoE -/- and ApoE -/- CB2 -/- mice and were fed a high-cholesterol diet for 8weeks. CB2 deficiency in bone marrow-derived cells increased leukocyte infiltration into the vessel wall, but had no impact on plaque formation. Cell culture experiments revealed that CB2 activation diminishes ROS generation in vascular cells. Selective CB2 receptor stimulation modulates atherogenesis via impact on both circulating proinflammatory and vascular cells.


Assuntos
Aterosclerose/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Animais , Apolipoproteínas E/genética , Aterosclerose/patologia , Aterosclerose/prevenção & controle , Pressão Sanguínea , Transplante de Medula Óssea , Moduladores de Receptores de Canabinoides/metabolismo , Colesterol/sangue , Células Endoteliais/metabolismo , Endotélio/metabolismo , Frequência Cardíaca , Leucócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Espécies Reativas de Oxigênio/metabolismo , Receptor CB2 de Canabinoide/genética
19.
Front Cardiovasc Med ; 8: 812702, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35097027

RESUMO

The development and clinical approval of immunotherapies has revolutionized cancer therapy. Although the role of adaptive immunity in atherogenesis is now well-established and several immunomodulatory strategies have proven beneficial in preclinical studies, anti-atherosclerotic immunotherapies available for clinical application are not available. Considering that adaptive immune responses are critically involved in both carcinogenesis and atherogenesis, immunotherapeutic approaches for the treatment of cancer and atherosclerosis may exert undesirable but also desirable side effects on the other condition, respectively. For example, the high antineoplastic efficacy of immune checkpoint inhibitors, which enhance effector immune responses against tumor cells by blocking co-inhibitory molecules, was recently shown to be constrained by substantial proatherogenic properties. In this review, we outline the specific role of immune responses in the development of cancer and atherosclerosis. Furthermore, we delineate how current cancer immunotherapies affect atherogenesis and discuss whether anti-atherosclerotic immunotherapies may similarly have an impact on carcinogenesis.

20.
J Cell Mol Med ; 14(9): 2250-6, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20597998

RESUMO

Endothelial cell apoptosis is a pivotal step in the development of atherosclerotic disease. Regeneration of the damaged endothelium is an attractive therapy option in the prevention and treatment of atherosclerotic disease. Apoptosis is associated with the release of microparticles (MP). Besides their role as marker of cell damage, recent reports have underlined their role as signalling elements in cell-cell communication. In this review, we focus on the emerging role of circulating MP as transmitters of biological information in cardiovascular disease.


Assuntos
Biomarcadores/metabolismo , Micropartículas Derivadas de Células/metabolismo , Animais , Comunicação Celular , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa