Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Neurochem ; 168(4): 414-427, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37017608

RESUMO

The α7 nicotinic receptors (NR) have been confirmed in the heart but their role in cardiac functions has been contradictory. To address these contradictory findings, we analyzed cardiac functions in α7 NR knockout mice (α7-/-) in vivo and ex vivo in isolated hearts. A standard limb leads electrocardiogram was used, and the pressure curves were recorded in vivo, in Arteria carotis and in the left ventricle, or ex vivo, in the left ventricle of the spontaneously beating isolated hearts perfused following Langedorff's method. Experiments were performed under basic conditions, hypercholinergic conditions, and adrenergic stress. The relative expression levels of α and ß NR subunits, muscarinic receptors, ß1 adrenergic receptors, and acetylcholine life cycle markers were determined using RT-qPCR. Our results revealed a prolonged QT interval in α7-/- mice. All in vivo hemodynamic parameters were preserved under all studied conditions. The only difference in ex vivo heart rate between genotypes was the loss of bradycardia in prolonged incubation of isoproterenol-pretreated hearts with high doses of acetylcholine. In contrast, left ventricular systolic pressure was lower under basal conditions and showed a significantly higher increase during adrenergic stimulation. No changes in mRNA expression were observed. In conclusion, α7 NR has no major effect on heart rate, except when stressed hearts are exposed to a prolonged hypercholinergic state, suggesting a role in acetylcholine spillover control. In the absence of extracardiac regulatory mechanisms, left ventricular systolic impairment is revealed.


Assuntos
Hemodinâmica , Receptor Nicotínico de Acetilcolina alfa7 , Animais , Camundongos , Acetilcolina/metabolismo , Adrenérgicos , Receptor Nicotínico de Acetilcolina alfa7/genética , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Hemodinâmica/genética , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Miocárdio/metabolismo
2.
Am J Physiol Heart Circ Physiol ; 320(5): H1975-H1984, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33769917

RESUMO

Nicotinic receptors (NRs) play an important role in the cholinergic regulation of heart functions, and converging evidence suggests a diverse repertoire of NR subunits in the heart. A recent hypothesis about the plasticity of ß NR subunits suggests that ß2-subunits and ß4-subunits may substitute for each other. In our study, we assessed the hypothetical ß-subunit interchangeability in the heart at the level of mRNA. Using two mutant mice strains lacking ß2 or ß4 NR subunits, we examined the relative expression of NR subunits and other key cholinergic molecules. We investigated the physiology of isolated hearts perfused by Langendorff's method at basal conditions and after cholinergic and/or adrenergic stimulation. Lack of ß2 NR subunit was accompanied with decreased relative expression of ß4-subunits and α3-subunits. No other cholinergic changes were observed at the level of mRNA, except for increased M3 and decreased M4 muscarinic receptors. Isolated hearts lacking ß2 NR subunit showed different dynamics in heart rate response to indirect cholinergic stimulation. In hearts lacking ß4 NR subunit, increased levels of ß2-subunits were observed together with decreased mRNA for acetylcholine-synthetizing enzyme and M1 and M4 muscarinic receptors. Changes in the expression levels in ß4-/- hearts were associated with increased basal heart rate and impaired response to a high dose of acetylcholine upon adrenergic stimulation. In support of the proposed plasticity of cardiac NRs, our results confirmed subunit-dependent compensatory changes to missing cardiac NRs subunits with consequences on isolated heart physiology.NEW & NOTEWORTHY In the present study, we observed an increase in mRNA levels of the ß2 NR subunit in ß4-/- hearts but not vice versa, thus supporting the hypothesis of ß NR subunit plasticity that depends on the specific type of missing ß-subunit. This was accompanied with specific cholinergic adaptations. Nevertheless, isolated hearts of ß4-/- mice showed increased basal heart rate and a higher sensitivity to a high dose of acetylcholine upon adrenergic stimulation.


Assuntos
Coração/efeitos dos fármacos , Miocárdio/metabolismo , Receptores Nicotínicos/metabolismo , Acetilcolina/farmacologia , Animais , Atropina/farmacologia , Inibidores da Colinesterase/farmacologia , Hexametônio/farmacologia , Isoproterenol/farmacologia , Camundongos , Camundongos Knockout , Antagonistas Muscarínicos/farmacologia , Neostigmina/farmacologia
3.
Can J Physiol Pharmacol ; 98(7): 473-476, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32017610

RESUMO

Acetylcholine (ACh)-mediated vagal transmission as well as nonneuronal ACh release are considered cardioprotective in pathological situations with increased sympathetic drive such as ischemia-reperfusion and cardiac remodeling. ACh action is terminated by hydrolysis by the cholinesterases (ChEs), acetylcholinesterase, and butyrylcholinesterase. Both ChEs exist in multiple molecular variants either soluble or anchored by specific anchoring proteins like collagen Q (ColQ) anchoring protein and proline-rich membrane anchoring protein (PRiMA). Here we assessed the expression of specific ChE molecular forms in different heart compartments using RT-qPCR. We show that both ChEs are expressed in all heart compartments but display different expression patterns. The acetylcholinesterase-T variant together with PRiMA and ColQ is predominantly expressed in rat atria. Butylcholinesterase is found in all heart compartments and is accompanied by both PRiMA and ColQ anchors. Its expression in the ventricular system suggests involvement in the nonneuronal cholinergic system. Additionally, two PRiMA variants are detected throughout the rat heart.


Assuntos
Acetilcolina/metabolismo , Acetilcolinesterase/análise , Butirilcolinesterase/análise , Miocárdio/enzimologia , Acetilcolinesterase/metabolismo , Animais , Butirilcolinesterase/metabolismo , Colágeno/análise , Colágeno/metabolismo , Proteínas Ligadas por GPI/análise , Proteínas Ligadas por GPI/metabolismo , Perfilação da Expressão Gênica , Isoenzimas/análise , Isoenzimas/metabolismo , Masculino , Proteínas de Membrana/análise , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/análise , Proteínas do Tecido Nervoso/metabolismo , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real
4.
Ceska Slov Farm ; 65(2): 52-63, 2016.
Artigo em Tcheco | MEDLINE | ID: mdl-27356594

RESUMO

UNLABELLED: Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) represent a small family of enzymes called cholinesterases. These enzymes are in the organisms either soluble or anchored through anchoring proteins collagen Q (ColQ) and proline-rich membrane anchor (PRiMA). Knowledge of molecular biology and genetics of cholinesterase and their anchoring proteins resulted in the preparation of mutant mice with the absence of different molecular forms of cholinesterases. So far a number of mutant mice were prepared with a genetic modification on the genes encoding cholinesterases or anchoring proteins. The mice with mutation in the genes encoding the cholinesterases are: the mice with the absence of AChE, mice with the absence of BChE, mice with a deletion of exon 5 and 6 in the AChE gene and mice with the absence of AChE in muscles. The mice with a mutation in the genes encoding anchoring proteins include the mice with the absence of AChE and BChE anchored by ColQ and mice with the absence of AChE and BChE anchored by PRiMA. The study of adaptation changes results from the absence of cholinesterases led to the enrichment of existing knowledge about cholinesterases and the cholinergic nervous system. KEY WORDS: absence of cholinesterases mutant mice acetylcholinesterase butyrylcholinesterase.


Assuntos
Acetilcolinesterase/genética , Butirilcolinesterase/genética , Camundongos Mutantes , Acetilcolinesterase/metabolismo , Animais , Butirilcolinesterase/metabolismo , Colágeno/genética , Colágeno/metabolismo , Éxons , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculos/metabolismo , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo
5.
Ceska Slov Farm ; 64(6): 254-63, 2015 Dec.
Artigo em Tcheco | MEDLINE | ID: mdl-26841700

RESUMO

The cholinergic system of the heart can be either of neuronal or non-neuronal origin. The neuronal cholinergic system in the heart is represented by preganglionic parasympathetic pathways, intracardiac parasympathetic ganglia and postganglionic parasympathetic neurons projecting to the atria, SA node and AV node. The non-neuronal cholinergic system consists of cardiomyocytes that have complete equipment for synthesis and secretion of acetylcholine. Current knowledge suggests that the non-neuronal cholinergic system in the heart affects the regulation of the heart during sympathetic activation. The non-neuronal cholinergic system of the heart plays also a role in the energy metabolism of cardimyocites. Acetylcholine of both neuronal and non-neuronal origin acts in the heart through muscarinic and nicotinic receptors. The effect of acetylcholine in the heart is terminated by cholinesterases acetylcholinesterase and butyrylcholinesterase. Recently, papers suggest that the increased cholinergic tone in the heart by cholinesterase inhibitors has a positive effect on some cardiovascular disorders such as heart failure. For this reason, the cholinesterase inhibitors might be used in the treatment of certain cardiovascular disorders in the future.


Assuntos
Coração/inervação , Sistema Nervoso Parassimpático/fisiologia , Acetilcolina/farmacologia , Animais , Doenças Cardiovasculares/tratamento farmacológico , Inibidores da Colinesterase/uso terapêutico , Gânglios Parassimpáticos/fisiologia , Humanos
6.
Anal Biochem ; 462: 67-75, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24929086

RESUMO

Ellman's assay is the most commonly used method to measure cholinesterase activity. It is cheap, fast, and reliable, but it has limitations when used for biological samples. The problems arise from 5,5-dithiobis(2-nitrobenzoic acid) (DTNB), which is unstable, interacts with free sulfhydryl groups in the sample, and may affect cholinesterase activity. We report that DTNB is more stable in 0.09 M Hepes with 0.05 M sodium phosphate buffer than in 0.1M sodium phosphate buffer, thereby notably reducing background. Using enzyme-linked immunosorbent assay (ELISA) to enrich tissue homogenates for cholinesterase while depleting the sample of sulfhydryl groups eliminates unwanted interactions with DTNB, making it possible to measure low cholinesterase activity in biological samples. To eliminate possible interference of DTNB with enzyme hydrolysis, we introduce a modification of the standard Ellman's assay. First, thioesters are hydrolyzed by cholinesterase to produce thiocholine in the absence of DTNB. Then, the reaction is stopped by a cholinesterase inhibitor and the produced thiocholine is revealed by DTNB and quantified at 412 nm. Indeed, this modification of Ellman's method increases butyrylcholinesterase activity by 20 to 25%. Moreover, high stability of thiocholine enables separation of the two reactions of the Ellman's method into two successive steps that may be convenient for some applications.


Assuntos
Butirilcolinesterase/metabolismo , Ensaios Enzimáticos/métodos , Ensaio de Imunoadsorção Enzimática/métodos , Ácido Ditionitrobenzoico/metabolismo , Humanos , Tiocolina/metabolismo
7.
Ceska Slov Farm ; 63(6): 254-63, 2014.
Artigo em Tcheco | MEDLINE | ID: mdl-26837871

RESUMO

UNLABELLED: The cholinergic system of the heart can be either of neuronal or non-neuronal origin. The neuronal cholinergic system in the heart is represented by preganglionic parasympathetic pathways, intracardiac parasympathetic ganglia and postganglionic parasympathetic neurons projecting to the atria, SA node and AV node. The non-neuronal cholinergic system consists of cardiomyocytes that have complete equipment for synthesis and secretion of acetylcholine. Current knowledge suggests that the non-neuronal cholinergic system in the heart affects the regulation of the heart during sympathetic activation. The non-neuronal cholinergic system of the heart plays also a role in the energy metabolism of cardimyocites. Acetylcholine of both neuronal and non-neuronal origin acts in the heart through muscarinic and nicotinic receptors. The effect of acetylcholine in the heart is terminated by cholinesterases acetylcholinesterase and butyrylcholinesterase. Recently, papers suggest that the increased cholinergic tone in the heart by cholinesterase inhibitors has a positive effect on some cardiovascular disorders such as heart failure. For this reason, the cholinesterase inhibitors might be used in the treatment of certain cardiovascular disorders in the future. KEY WORDS: cholinergic system heart innervation non-neuronal cholinergic system of the heart receptors cholinesterases in the heart.

8.
Eur J Midwifery ; 7: 6, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36926447

RESUMO

INTRODUCTION: Using validated and reliable instruments to examine women's birth experiences is important to ensure respectful care. There is a lack of validated instruments for evaluating childbirth care in the Slovak context. In this study, we aimed to adapt and validate the childbirth experience questionnaire (CEQ) in Slovakia (CEQ-SK). METHOD: The CEQ-SK was developed and modified from the English version of the CEQ/CEQ2. Face validity was tested in two pre-tests. A convenience sample, recruited through social media, included 286 women who had given birth within the last six months. Reliability was assessed using Cronbach's alpha. Construct and discriminant validity was assessed by exploratory factor analysis and known-group comparison. RESULTS: The exploratory factor analysis revealed a three-dimensional structure, explaining 63.3% of the total variance. The factors were labelled 'Own capacity', 'Professional support' and 'Decision making'. No items were excluded. Internal consistency was demonstrated with an overall Cronbach's alpha of 0.94 for the total scale. Primiparous women, women who had an emergency cesarean section, and women who had been exposed to the Kristeller manoeuvre had a lower overall score on the CEQ-SK compared to parous women, women having a vaginal birth and women not exposed to the Kristeller manoeuvre. CONCLUSION: The CEQ-SK was found to be a valid and reliable tool for evaluating childbirth experience in Slovakia. The original CEQ is a four-dimensional questionnaire; however, factor analysis showed a three-dimensional structure in the Slovak sample. This needs to be taken into consideration when comparing the results from the CEQ-SK with studies that use the four-dimensional structure.

9.
Chem Biol Interact ; 381: 110557, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37209860

RESUMO

The COVID-19 pandemic represents an excessive burden on health care systems worldwide and the number of patients who require special care in the clinical setting is often hard to predict. Consequently, there is an unmet need for a reliable biomarker that could predict clinical outcomes of high-risk patients. Lower serum butyrylcholinesterase (BChE) activity was recently linked with poor outcomes of COVID-19 patients. In line with this, our monocentric observational study on hospitalized COVID-19 patients focused on changes in serum BChE activity in relation to disease progression. Blood samples from 148 adult patients of both sexes were collected during their hospital stay at the Clinics of Infectiology and Clinics of Anesthesiology and Intensive Care, Trnava University Hospital in alignment with routine blood tests. Sera were analyzed using modified Ellman's method. Patient data with information about the health status, comorbidities and other blood parameters were collected in pseudonymized form. Our results show a lower serum BChE activity together with progressive decline of BChE activity in non-survivors, while higher stable values were present in discharged or transferred patients requiring further care. Lower BChE activity was associated with higher age and lower BMI. Moreover, we observed a negative correlation of serum BChE activity with the routinely used inflammatory markers, C-reactive protein and interleukin-6. Serum BChE activity mirrored clinical outcomes of COVID-19 patients and thus serves as a novel prognostic marker in high-risk patients.


Assuntos
Butirilcolinesterase , COVID-19 , Adulto , Feminino , Humanos , Masculino , Biomarcadores , Butirilcolinesterase/metabolismo , Proteína C-Reativa/metabolismo , Pandemias
10.
J Neurochem ; 122(5): 1065-80, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22747514

RESUMO

Acetylcholinesterase (AChE) rapidly hydrolyzes acetylcholine. At the neuromuscular junction, AChE is mainly anchored in the extracellular matrix by the collagen Q, whereas in the brain, AChE is tethered by the proline-rich membrane anchor (PRiMA). The AChE-deficient mice, in which AChE has been deleted from all tissues, have severe handicaps. Surprisingly, PRiMA KO mice in which AChE is mostly eliminated from the brain show very few deficits. We now report that most of the changes observed in the brain of AChE-deficient mice, and in particular the high levels of ambient extracellular acetylcholine and the massive decrease of muscarinic receptors, are also observed in the brain of PRiMA KO. However, the two groups of mutants differ in their responses to AChE inhibitors. Since PRiMA-KO mice and AChE-deficient mice have similar low AChE concentrations in the brain but differ in the AChE content of the peripheral nervous system, these results suggest that peripheral nervous system AChE is a major target of AChE inhibitors, and that its absence in AChE- deficient mice is the main cause of the slow development and vulnerability of these mice. At the level of the brain, the adaptation to the absence of AChE is nearly complete.


Assuntos
Acetilcolinesterase/deficiência , Adaptação Fisiológica/genética , Encéfalo/enzimologia , Regulação da Expressão Gênica/genética , Proteínas de Membrana/deficiência , Proteínas do Tecido Nervoso/deficiência , Acetilcolina/metabolismo , Acetilcolinesterase/metabolismo , Adaptação Fisiológica/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Temperatura Corporal/efeitos dos fármacos , Temperatura Corporal/genética , Encéfalo/anatomia & histologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacocinética , Bungarotoxinas/farmacocinética , Colina/metabolismo , Colinérgicos/farmacologia , Inibidores da Colinesterase/farmacologia , Colágeno/deficiência , Di-Hidro-beta-Eritroidina/farmacologia , Relação Dose-Resposta a Droga , Comportamento Exploratório/efeitos dos fármacos , Comportamento Exploratório/fisiologia , Marcha/efeitos dos fármacos , Marcha/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas In Vitro , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Camundongos , Camundongos Knockout , Microdiálise , Atividade Motora/efeitos dos fármacos , Atividade Motora/genética , Antagonistas Muscarínicos/farmacocinética , Proteínas Musculares/deficiência , Unhas Encravadas , Neostigmina/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Pirenzepina/análogos & derivados , Pirenzepina/farmacocinética , Ligação Proteica/efeitos dos fármacos , Piridinas/farmacocinética , Radioisótopos/farmacocinética , Receptores Muscarínicos/metabolismo , Teste de Desempenho do Rota-Rod , Escopolamina/farmacologia , Medula Espinal/citologia , Estatísticas não Paramétricas , Trítio/farmacocinética
11.
Mol Cell Neurosci ; 46(1): 272-81, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20883790

RESUMO

Acetylcholinesterase (AChE) terminates the action of acetylcholine at cholinergic synapses thereby preventing rebinding of acetylcholine to nicotinic postsynaptic receptors at the neuromuscular junction. Here we show that AChE is not localized close to these receptors on the postsynaptic surface, but is instead clustered along the presynaptic membrane and deep in the postsynaptic folds. Because AChE is anchored by ColQ in the basal lamina and is linked to the plasma membrane by a transmembrane subunit (PRiMA), we used a genetic approach to evaluate the respective contribution of each anchoring oligomer. By visualization and quantification of AChE in mouse strains devoid of ColQ, PRiMA or AChE, specifically in the muscle, we found that along the nerve terminus the vast majority of AChE is anchored by ColQ that is only produced by the muscle, whereas very minor amounts of AChE are anchored by PRiMA that is produced by motoneurons. In its synaptic location, AChE is therefore positioned to scavenge ACh that effluxes from the nerve by non-quantal release. AChE-PRiMA, produced by the muscle, is diffusely distributed along the muscle in extrajunctional regions.


Assuntos
Acetilcolinesterase/metabolismo , Colágeno/metabolismo , Isoenzimas/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Junção Neuromuscular/metabolismo , Acetilcolina/metabolismo , Acetilcolinesterase/genética , Animais , Bungarotoxinas/metabolismo , Colágeno/genética , Imuno-Histoquímica , Isoenzimas/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Junção Neuromuscular/ultraestrutura , Sinapses/metabolismo , Sinapses/ultraestrutura
12.
Nutrients ; 14(10)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35631176

RESUMO

(1) Background: Autism, also known as autism-spectrum disorder, is a pervasive developmental disorder affecting social skills and psychological status in particular. The complex etiopathogenesis of autism limits efficient therapy, which leads to problems with the normal social integration of the individual and causes severe family distress. Injectable methylcobalamin was shown to improve the clinical status of patients via enhanced cell oxidative status and/or methylation capacity. Here we tested the efficiency of a syrup form of methylcobalamin in treating autism. (2) Methods: Methylcobalamin was administered daily at 500 µg dose to autistic children and young adults (n = 25) during a 200-day period. Clinical and psychological status was evaluated by parents and psychologists and plasma levels of reduced and oxidized glutathione, vitamin B12, homocysteine, and cysteine were determined before the treatment, and at day 100 and day 200 of the treatment. (3) Results: Good patient compliance was reported. Methylcobalamin treatment gradually improved the overall clinical and psychological status, with the highest impact in the social domain, followed by the cognitive, behavioral and communication characteristics. Changes in the clinical and psychological status were strongly associated with the changes in the level of reduced glutathione and reduced/oxidized glutathione ratio. (4) Conclusion: A high dose of methylcobalamin administered in syrup form ameliorates the clinical and psychological status of autistic individuals, probably due to the improved oxidative status.


Assuntos
Transtorno Autístico , Vitamina B 12 , Adolescente , Transtorno Autístico/tratamento farmacológico , Criança , Pré-Escolar , Feminino , Dissulfeto de Glutationa/sangue , Humanos , Masculino , Vitamina B 12/administração & dosagem , Vitamina B 12/análogos & derivados , Adulto Jovem
13.
J Fungi (Basel) ; 7(10)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34682222

RESUMO

Candiduria is a common nosocomial infection in hospitalized patients, which may progress into life-threatening candidemia. Successful treatment of urosepsis requires early and effective antifungal therapy, while the available agents within three pharmacological classes each have characteristic pharmacokinetics and side effect profiles. Moreover, treatment of Candida spp. infections is becoming challenging due to increasing multi drug-resistance. Here, we present a case of candidemia resulting from a multi drug-resistant C. glabrata infection of the urinary tract. Due to resistance to fluconazole and a contraindication for amphotericin B, micafungin was used in the treatment, regardless of its unfavorable pharmacokinetic properties. Our study showed that despite the expected low levels in the urinary tract, micafungin was successful in the eradication of C. glabrata allowing full recovery of the patient. Thus, micafungin should be considered in the management of urosepsis caused by sensitive Candida spp.

14.
J Neurosci ; 29(14): 4519-30, 2009 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-19357277

RESUMO

Acetylcholinesterase (AChE) accumulates on axonal varicosities and is primarily found as tetramers associated with a proline-rich membrane anchor (PRiMA). PRiMA is a small transmembrane protein that efficiently transforms secreted AChE to an enzyme anchored on the outer cell surface. Surprisingly, in the striatum of the PRiMA knock-out mouse, despite a normal level of AChE mRNA, we find only 2-3% of wild type AChE activity, with the residual AChE localized in the endoplasmic reticulum, demonstrating that PRiMA in vivo is necessary for intracellular processing of AChE in neurons. Moreover, deletion of the retention signal of the AChE catalytic subunit in mice, which is the domain of interaction with PRiMA, does not restore AChE activity in the striatum, establishing that PRiMA is necessary to target and/or to stabilize nascent AChE in neurons. These unexpected findings open new avenues to modulating AChE activity and its distribution in CNS disorders.


Assuntos
Acetilcolinesterase/metabolismo , Domínio Catalítico/fisiologia , Marcação de Genes/métodos , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Acetilcolinesterase/genética , Acetilcolinesterase/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação/fisiologia , Linhagem Celular , Estabilidade Enzimática/fisiologia , Feminino , Humanos , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Neurônios/química , Neurônios/enzimologia
16.
FEBS J ; 273(6): 1185-97, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16519684

RESUMO

The purpose of this work was to study the catalytic properties of rat butyrylcholinesterase with benzoylcholine (BzCh) and N-alkyl derivatives of BzCh (BCHn) as substrates. Complex hysteretic behaviour was observed in the approach to steady-state kinetics for each ester. Hysteresis consisted of a long lag phase with damped oscillation. The presence of a long lag phase, with no oscillations, in substrate hydrolysis by rat butyrylcholinesterase was also observed with N-methylindoxyl acetate as substrate. Hysteretic behaviour was explained by the existence of two interconvertible butyrylcholinesterase forms in slow equilibrium, while just one of them is catalytically active. The damped oscillations were explained by the existence of different substrate conformational states and/or aggregates (micelles) in slow equilibrium. Different substrate conformational states were confirmed by 1H-NMR. The K(m) values for substrates decreased as the length of the alkyl chain increased. High affinity of the enzyme for the longest alkyl chain length substrates was explained by multiple hydrophobic interactions of the alkyl chain with amino acid residues lining the active site gorge. Molecular modelling studies supported this interpretation; docking energy decreased as the length of the alkyl chain increased. The long-chain substrates had reduced k(cat) values. Docking studies showed that long-chain substrates were not optimally oriented in the active site for catalysis, thus explaining the slow rate of hydrolysis. The hydrolytic rate of BCH12 and longer alkyl chain esters vs. substrate concentration showed a premature plateau far below V(max). This was due to the loss of substrate availability. The best substrates for rat butyrylcholinesterase were short alkyl homologues, BzCh - BCH4.


Assuntos
Benzoilcolina/metabolismo , Butirilcolinesterase/química , Butirilcolinesterase/metabolismo , Animais , Sítios de Ligação , Catálise , Colinesterases/metabolismo , Hidrólise , Cinética , Modelos Moleculares , Estrutura Molecular , Oscilometria , Ligação Proteica , Conformação Proteica , Ratos , Estereoisomerismo , Especificidade por Substrato
17.
J Alzheimers Dis ; 51(3): 801-13, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26890780

RESUMO

Alzheimer's disease (AD) is a progressive and irreversible neurodegenerative disorder characterized by a central cholinergic deficit. Non-neuronal cholinergic changes are, however, described as well. Here we focused on possible changes in the activity of the plasma cholinesterases, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), in hospitalized AD patients. We analyzed plasma AChE and BChE activities with regards to age, gender, body mass index (BMI), cognitive functions, and ability to perform activities of daily living in AD patients in comparison to healthy subjects. We observed lower AChE activity and trend toward lower BChE activity in AD patients, which both correlated with low BMI. AD patients unable to perform basic activities of daily living (feeding, bathing, dressing, and grooming) showed reduced plasma AChE activities, while worse spatial orientation was linked to lower BChE activities. Three out of four AD patients with the lowest BChE activities died within one year. In conclusion, progressed AD was accompanied by lower plasma AChE activity and trend toward lower BChE activity, which correlated with BMI and deficits in different components of the AD.


Assuntos
Acetilcolinesterase/sangue , Atividades Cotidianas , Doença de Alzheimer/fisiopatologia , Índice de Massa Corporal , Butirilcolinesterase/sangue , Orientação Espacial/fisiologia , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/terapia , Análise Química do Sangue , Feminino , Hospitalização , Humanos , Masculino , Pessoa de Meia-Idade
18.
Chem Biol Interact ; 243: 82-90, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26585590

RESUMO

Five mouse anti-human butyrylcholinesterase (BChE) monoclonal antibodies bind tightly to native human BChE with nanomolar dissociation constants. Pairing analysis in the Octet system identified the monoclonal antibodies that bind to overlapping and independent epitopes on human BChE. The nucleotide and amino acid sequences of 4 monoclonal antibodies are deposited in GenBank. Our goal was to determine which of the 5 monoclonal antibodies recognize BChE in the plasma of animals. Binding of monoclonal antibodies 11D8, B2 18-5, B2 12-1, mAb2 and 3E8 to BChE in animal plasma was measured using antibody immobilized on Pansorbin cells and on Dynabeads Protein G. A third method visualized binding by the shift of BChE activity bands on nondenaturing gels stained for BChE activity. Gels were counterstained for carboxylesterase activity. The three methods agreed that B2 18-5 and mAb2 have broad species specificity, but the other monoclonal antibodies interacted only with human BChE, the exception being 3E8, which also bound chicken BChE. B2 18-5 and mAb2 recognized BChE in human, rhesus monkey, horse, cat, and tiger plasma. A weak response was found with rabbit BChE. Monoclonal mAb2, but not B2 18-5, bound pig and bovine BChE. Gels stained for carboxylesterase activity confirmed that plasma from humans, monkey, pig, chicken, and cow does not contain carboxylesterase, but plasma from horse, cat, tiger, rabbit, guinea pig, mouse, and rat has carboxylesterase. Rabbit plasma carboxylesterase hydrolyzes butyrylthiocholine. In conclusion monoclonal antibodies B2 18-5 and mAb2 can be used to immuno extract BChE from the plasma of humans, monkey and other animals.


Assuntos
Anticorpos Monoclonais/imunologia , Butirilcolinesterase/imunologia , Animais , Anticorpos Monoclonais/sangue , Butirilcolinesterase/sangue , Gatos , Bovinos , Cobaias , Cavalos , Humanos , Macaca mulatta , Coelhos , Ratos , Especificidade da Espécie , Suínos
19.
Chem Biol Interact ; 157-158: 71-8, 2005 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-16243306

RESUMO

The purpose of this work was to develop a gene delivery system that expressed acetylcholinesterase (AChE) for prolonged periods. An adeno-associated virus (AAV) expressing human AChE was constructed by co-transfecting three plasmids into HEK 293T cells. The purified vector expressed 0.17 microg AChE per 1 million viral particles in culture medium in 23 h, or 0.8 U/ml. The AAV/hAChE was injected into muscle of adult AChE knockout mice and into the brains of 3-6 week old AChE knockout mice. Intramuscular injection yielded plasma AChE levels approaching 50% of the AChE activity of wild-type mouse plasma. The highest AChE activity was found on day 3 post-injection. AChE activity declined thereafter to a constant 7% of normal. The decreased level was accompanied by the appearance of anti-human AChE antibodies, suggesting partial clearance of AChE from plasma by antibodies. Intrastriatal injection resulted in AChE expression in the striatum. No antibodies were detected in animals treated intrastriatally. Motor coordination was improved and the lifespan of intrastriatally-treated AChE knockout mice was prolonged. Human AChE was expressed in mouse brain for up to 7 months after intrastriatal injection of an AAV/hAChE construct. Gene-therapy to supply AChE to the striatum improved motor coordination and prolonged the life of mice genetically deficient in AChE, probably by reducing their susceptibility to spontaneous seizures. This supports the hypothesis that their seizures are induced by excess acetylcholine.


Assuntos
Acetilcolinesterase/deficiência , Acetilcolinesterase/metabolismo , Dependovirus/genética , Expressão Gênica , Acetilcolinesterase/genética , Acetilcolinesterase/imunologia , Envelhecimento/fisiologia , Animais , Anticorpos/imunologia , Encéfalo/enzimologia , Linhagem Celular , Dependovirus/fisiologia , Humanos , Injeções Intramusculares , Camundongos , Camundongos Knockout , Fenótipo , Taxa de Sobrevida
20.
Chem Biol Interact ; 157-158: 143-52, 2005 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-16256969

RESUMO

Butyrylcholinesterase (BChE) displays hysteretic behavior with certain neutral and charged substrates in the approach to steady state. Previous studies led us to interpret this phenomenon in terms of slow transitions between two enzyme conformers E and E'. This kinetic peculiarity is observed in human, horse and rat BChE. Oscillations that superimpose on the hysteretic lag are observed when benzoylcholine and N-alkyl derivatives of benzoylcholine are used as substrate. Hysteresis of BChE can be modulated by medium parameters (pH, salts, temperature, and pressure). Though mutant enzymes show different hysteretic behavior, so far attempts to provide a molecular mechanism of BChE hysteresis from mutagenesis studies have been unproductive. However, the substrate dependence of the hysteretic induction times, using wild-type BChE and several mutants, allowed us to build a general, mechanistic model for the hysteresis. In this model, substrate can bind to E, E', or both conformers, and ES and/or E'S can be catalytically active. The exact pathway followed depends on both the nature of the substrate and the structure of the BChE mutant under study. We propose that oscillations develop when substrate exists in different, slowly interconvertible, conformational and/or aggregation forms, of which only the minor form is capable of reacting with BChE. In support of this proposal, NMR studies have provided direct evidence for slow equilibria between monomeric and micellar forms of long-chain, alkyl derivatives of benzoyl-(N-substituted) choline. There is no direct evidence that hysteresis plays a role in BChE function(s). However, the "new view" of protein dynamics proposes that proteins are normally in equilibrium between pre-existing, functional and non-functional conformers; and that binding a ligand to the functional form shifts that equilibrium towards the functional conformation. Therefore, a physiological or toxicological relevance for the hysteresis in BChE cannot be ruled out.


Assuntos
Butirilcolinesterase/química , Butirilcolinesterase/metabolismo , Animais , Cavalos , Humanos , Hidrólise , Cinética , Mutação , Ratos , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa