Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
AJNR Am J Neuroradiol ; 23(10): 1795-802, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12427641

RESUMO

BACKGROUND AND PURPOSE: Recent work has shown a potential for excessive heating of deep brain stimulation electrodes during MR imaging. This in vitro study investigates the relationship between electrode heating and the specific absorption rate (SAR) of several MR images. METHODS: In vitro testing was performed by using a 1.5-T MR imaging system and a head transmit-receive coil, with bilateral deep brain stimulation systems positioned in a gel saline-filled phantom, and temperature monitoring with a fluoroptic thermometry system. Standardized fast spin-echo sequences were performed over a range of high, medium, and low SAR values. Several additional, clinically important MR imaging techniques, including 3D magnetization prepared rapid acquisition gradient-echo imaging, echo-planar imaging, quantitative magnetization transfer imaging, and magnetization transfer-suppressed MR angiography, were also tested by using typical parameters. RESULTS: A significant, highly linear relationship between SAR and electrode heating was found, with the temperature elevation being approximately 0.9 times the local SAR value. Minor temperature elevations, <1 degrees C, were found with the fast spin-echo, magnetization prepared rapid acquisition gradient-echo, and echo-planar clinical imaging sequences. The high dB/dt echo-planar imaging sequence had no significant heating independent of SAR considerations. Sequences with magnetization transfer pulses produced temperature elevations in the 1.0 to 2.0 degrees C range, which was less than theoretically predicted for the relatively high SAR values. CONCLUSION: A potential exists for excessive MR imaging-related heating in patients with deep brain stimulation electrodes; however, the temperature increases are linearly related to SAR values. Clinical imaging sequences that are associated with tolerable temperature elevations in the

Assuntos
Encéfalo/diagnóstico por imagem , Imagem Ecoplanar , Calefação/instrumentação , Temperatura Corporal/fisiologia , Estimulação Elétrica/instrumentação , Eletrodos Implantados , Humanos , Modelos Lineares , Valor Preditivo dos Testes , Radiografia
2.
J Magn Reson Imaging ; 21(1): 72-7, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15611943

RESUMO

PURPOSE: To evaluate magnetic field interactions at 1.5- and 3-Tesla for implantable pulse generators (IPGs) and radiofrequency (RF) receivers used for implantable neurostimulation systems. MATERIALS AND METHODS: Measurements of magnetically induced displacement force and torque were determined for 10 devices (seven IPGs, three RF receivers) used for neurostimulation systems. Displacement force and torque were assessed at various positions in 1.5- and 3-Tesla MR systems using standardized techniques. RESULTS: Four IPGs exhibited force ratios (magnetic attraction force/device weight) greater than 1.0, with the overall magnitude of the force ratio increasing significantly when comparing the 1.5-Tesla to the 3-Tesla MR system. Of the seven IPGs tested, one exhibited a torque ratio (magnetic induced torque/product of the device weight and length) greater than 1.0. The RF receivers displayed relatively strong magnetic field interactions at both 1.5- and 3-Tesla, exhibiting force and torque ratios greater than 1.0. CONCLUSIONS: The neurostimulation implants tested exhibited varying degrees of magnetic field interactions, with four of the seven IPGs and the three RF receivers exhibiting at least one MR-induced force or torque value greater than the effect of gravity. These findings have important implications for patients with these implants who are referred for MRI examinations.


Assuntos
Estimulação Encefálica Profunda/instrumentação , Imageamento por Ressonância Magnética/métodos , Próteses e Implantes , Campos Eletromagnéticos , Segurança de Equipamentos , Humanos , Torque
3.
J Magn Reson Imaging ; 15(3): 241-50, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11891968

RESUMO

PURPOSE: To assess magnetic resonance imaging (MRI)-related heating for a neurostimulation system (Activa Tremor Control System, Medtronic, Minneapolis, MN) used for chronic deep brain stimulation (DBS). MATERIALS AND METHODS: Different configurations were evaluated for bilateral neurostimulators (Soletra Model 7426), extensions, and leads to assess worst-case and clinically relevant positioning scenarios. In vitro testing was performed using a 1.5-T/64-MHz MR system and a gel-filled phantom designed to approximate the head and upper torso of a human subject. MRI was conducted using the transmit/receive body and transmit/receive head radio frequency (RF) coils. Various levels of RF energy were applied with the transmit/receive body (whole-body averaged specific absorption rate (SAR); range, 0.98-3.90 W/kg) and transmit/receive head (whole-body averaged SAR; range, 0.07-0.24 W/kg) coils. A fluoroptic thermometry system was used to record temperatures at multiple locations before (1 minute) and during (15 minutes) MRI. RESULTS: Using the body RF coil, the highest temperature changes ranged from 2.5 degrees-25.3 degrees C. Using the head RF coil, the highest temperature changes ranged from 2.3 degrees-7.1 degrees C.Thus, these findings indicated that substantial heating occurs under certain conditions, while others produce relatively minor, physiologically inconsequential temperature increases. CONCLUSION: The temperature increases were dependent on the type of RF coil, level of SAR used, and how the lead wires were positioned. Notably, the use of clinically relevant positioning techniques for the neurostimulation system and low SARs commonly used for imaging the brain generated little heating. Based on this information, MR safety guidelines are provided. These observations are restricted to the tested neurostimulation system.


Assuntos
Encéfalo/fisiopatologia , Temperatura Alta/efeitos adversos , Imageamento por Ressonância Magnética/efeitos adversos , Eletrodos Implantados/efeitos adversos , Técnicas In Vitro , Imagens de Fantasmas , Termografia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa