Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Int J Cancer ; 139(4): 916-27, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27037627

RESUMO

Chondroitin sulfate proteoglycan 4 (CSPG4) has been identified as a highly promising target antigen for immunotherapy of triple-negative breast cancer (TNBC). TNBC represents a highly aggressive heterogeneous group of tumors lacking expression of estrogen, progesterone and human epidermal growth factor receptor 2. TNBC is particularly prevalent among young premenopausal women. No suitable targeted therapies are currently available and therefore, novel agents for the targeted elimination of TNBC are urgently needed. Here, we present a novel cytolytic fusion protein (CFP), designated αCSPG4(scFv)-MAP, that consists of a high affinity CSPG4-specific single-chain antibody fragment (scFv) genetically fused to a functionally enhanced form of the human microtubule-associated protein (MAP) tau. Our data indicate that αCSPG4(scFv)-MAP efficiently targets CSPG4(+) TNBC-derived cell lines MDA-MB-231 and Hs 578T and potently inhibits their growth with IC50 values of ∼200 nM. Treatment with αCSPG(scFv)-MAP resulted in induction of the mitochondrial stress pathway by activation of caspase-9 as well as endonuclease G translocation to the nucleus, while induction of the caspase-3 apoptosis pathway was not detectable. Importantly, in vivo studies in mice bearing human breast cancer xenografts revealed efficient targeting to and accumulation of αCSPG4(scFv)-MAP at tumor sites resulting in prominent tumor regression. Taken together, this preclinical proof of concept study confirms the potential clinical value of αCSPG4(scFv)-MAP as a novel targeted approach for the elimination of CSPG4-positive TNBC.


Assuntos
Anticorpos Monoclonais/genética , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Anticorpos de Cadeia Única/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Proteínas tau/metabolismo , Animais , Biomarcadores , Biomarcadores Tumorais , Caspase 3/metabolismo , Caspase 9/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Proteoglicanas de Sulfatos de Condroitina/genética , Modelos Animais de Doenças , Feminino , Expressão Gênica , Humanos , Proteínas de Membrana/genética , Camundongos , Terapia de Alvo Molecular , Ligação Proteica , Transporte Proteico , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Tubulina (Proteína)/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas tau/genética
2.
Immunol Cell Biol ; 94(5): 470-8, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26743033

RESUMO

Classical immunotoxins compromise a binding component (for example, a ligand, antibody or fragment thereof) and a cytotoxic component, usually derived from bacteria or plants (for example, Pseudomonas exotoxin A or ricin). Despite successful testing in vitro, the clinical development of immunotoxins has been hampered by immunogenicity and unsatisfactory safety profiles. Therefore, research has focused on fully human pro-apoptotic components suitable for the development of cytolytic fusion proteins (CFP). We recently reported that human microtubule-associated protein tau (MAP) can induce apoptosis when delivered to rapidly proliferating cancer cells. Here, we describe a new fully human CFP called H22(scFv)-MAP, which specifically targets CD64(+) cells. We show that H22(scFv)-MAP can efficiently kill proliferating HL-60 pro-monocytic cells in vitro. In addition, the human CFP specifically eliminates polarized M1 macrophages in a transgenic mouse model of cutaneous chronic inflammation. Because M1 macrophages promote the pathogenesis of many chronic inflammatory diseases, targeting this cell population with H22(scFv)-MAP could help to treat diseases such as atopic dermatitis, rheumatoid arthritis and inflammatory bowel disease.


Assuntos
Polaridade Celular , Macrófagos/citologia , Macrófagos/metabolismo , Receptores de IgG/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Proteínas tau/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Polaridade Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Doença Crônica , Humanos , Inflamação/patologia , Interferon gama/farmacologia , Macrófagos/efeitos dos fármacos , Camundongos , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Ligação Proteica/efeitos dos fármacos , Anticorpos de Cadeia Única/metabolismo , Pele/patologia
3.
Int J Cancer ; 137(11): 2729-38, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26041304

RESUMO

Antibody-based immunotherapy of leukemia requires the targeting of specific antigens on the surface of blasts. The Fc gamma receptor (CD64) has been investigated in detail, and CD64-targeting immunotherapy has shown promising efficacy in the targeted ablation of acute myeloid leukemia (AML), acute myelomonocytic leukemia (AMML) and chronic myeloid leukemia cells (CML). Here we investigate for the first time the potential of FcαRI (CD89) as a new target antigen expressed by different myeloid leukemic cell populations. For specific targeting and killing, we generated a recombinant fusion protein comprising an anti-human CD89 single-chain Fragment variable and the well-characterized truncated version of the potent Pseudomonas aeruginosa exotoxin A (ETA'). Our novel therapeutic approach achieved in vitro EC50 values in range 0.2-3 nM depending on the applied stimuli, that is, interferon gamma or tumor necrosis factor alpha. We also observed a dose-dependent apoptosis-mediated cytotoxicity, which resulted in the elimination of up to 90% of the target cells within 72 hr. These findings were also confirmed ex vivo using leukemic primary cells from peripheral blood samples of three previously untreated patients. We conclude that CD89-specific targeting of leukemia cell lines can be achieved in vitro and that the efficient elimination of leukemic primary cells supports the potential of CD89-ETA' as a potent, novel immunotherapeutic agent.


Assuntos
Antígenos CD/imunologia , Antígenos de Neoplasias/imunologia , Leucemia Mieloide/imunologia , Receptores Fc/imunologia , ADP Ribose Transferases/imunologia , Idoso , Apoptose/imunologia , Toxinas Bacterianas/imunologia , Exotoxinas/imunologia , Feminino , Células HL-60 , Humanos , Imunoterapia/métodos , Interferon gama/imunologia , Masculino , Pessoa de Meia-Idade , Proteínas Recombinantes de Fusão/imunologia , Células Tumorais Cultivadas , Fator de Necrose Tumoral alfa/imunologia , Células U937 , Fatores de Virulência/imunologia , Exotoxina A de Pseudomonas aeruginosa
4.
Br J Haematol ; 164(2): 251-7, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24164493

RESUMO

Hodgkin lymphoma (HL) and systemic anaplastic large cell lymphoma (sALCL) are rare lymphoproliferative cancer types. Although most HL patients can be cured by chemo- and radio-therapy, 4-50% of patients relapse and have a poor prognosis. The need for improved therapeutic options for patients with relapsed or refractory disease has been addressed by CD30-specific antibody-based immunotherapeutics. However, available CD30-specific monoclonal antibodies (mAbs), antibody drug conjugates (ADCs) or chimeric immunotoxins suffer from the requirement of a functional host immunity, undesirable immune reactions or heterogeneity and instability, respectively. Here, we present a new fusion protein comprised of the CD30-specific antibody single-chain fragment Ki4(scFv) and the human pro-apoptotic effector protein, microtubule-associated protein tau (MAPT). Ki4(scFv)-MAP selectively induced apoptosis in rapidly proliferating L540cy, L428, and Karpas 299 cells in a dose-dependent manner. Tubulin polymerization assays confirmed that Ki4(scFv)-MAP stabilizes microtubules, suggesting a mechanism for its pro-apoptotic action. Dose-finding experiments proved that Ki4(scFv)-MAP is well tolerated in mice compared to the previously reported Ki4(scFv)-ETA'. Ki4(scFv)-MAP significantly inhibited growth of subcutaneous L540cy xenograft tumours in mice. Our data present a novel approach for the treatment of CD30(+) lymphomas, combining the binding specificity of a target-specific antibody fragment with the selective cytotoxicity of MAPT towards proliferating lymphoma cells.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos , Doença de Hodgkin/metabolismo , Doença de Hodgkin/patologia , Antígeno Ki-1/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Anticorpos de Cadeia Única/farmacologia , Proteínas tau/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Antígeno Ki-1/imunologia , Camundongos , Microtúbulos/metabolismo , Ligação Proteica , Estabilidade Proteica , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/metabolismo , Anticorpos de Cadeia Única/imunologia , Anticorpos de Cadeia Única/metabolismo , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas tau/imunologia
5.
Prog Retin Eye Res ; 99: 101243, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38218527

RESUMO

Since the groundbreaking approval of the first anti-VEGF therapy in 2004, the retinal therapeutics field has undergone a remarkable transformation, witnessing a surge in novel, disease-modifying therapeutics for a broad spectrum of retinal diseases, extending beyond exudative VEGF-driven conditions. The surge in scientific advancement and the pressing, unmet, medical need have captured the attention of venture capital investors, who have collectively invested close to $10 billion in research and development of new retinal therapeutics between 2004 and 2023. Notably, the field of exudative diseases has gradually shifted away from trying to outcompete anti-VEGF therapeutics towards lowering the overall treatment burden by reducing injection frequency. Simultaneously, a new era has emerged in the non-exudative field, targeting prevalent conditions like dry AMD and rare indications such as Retinitis pigmentosa. This has led to promising drug candidates in development, culminating in the landmark approval of Luxturna for a rare form of Retinitis pigmentosa. The validation of new mechanisms, such as the complement pathway in dry AMD has paved the way for the approvals of Syvovre (Apellis) and Izervay (Iveric/Astellas), marking the first two therapies for this condition. In this comprehensive review, we share our view on the cumulative lessons from the past two decades in developing retinal therapeutics, covering both positive achievements and challenges. We also contextualize the investments, strategic partnering deals, and acquisitions of biotech companies, pharmaceutical companies venture capital investors in retinal therapeutics, respectively. Finally, we provide an outlook and potentially a forward-looking roadmap on novel retinal therapeutics, highlighting the emergence of potential new intervention strategies, such as cell-based therapies, gene editing, and combination therapies. We conclude that upcoming developments have the potential to further stimulate venture capital investments, which ultimately could facilitate the development and delivery of new therapies to patients in need.


Assuntos
Investimentos em Saúde , Retinose Pigmentar , Humanos
6.
Biomedicines ; 5(3)2017 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-28653985

RESUMO

Some of the most promising small molecule toxins used to generate antibody drug conjugates (ADCs) include anti-mitotic agents (e.g., auristatin and its derivatives) which are designed to attack cancerous cells at their most vulnerable state during mitosis. We were interested in identifying a human cystostatic protein eventually showing comparable activities and allowing the generation of corresponding targeted fully human cytolytic fusion proteins. Recently, we identified the human microtubule associated protein tau (MAP tau), which binds specifically to tubulin and modulates the stability of microtubules, thereby blocking mitosis and presumably vesicular transport. By binding and stabilizing polymerized microtubule filaments, MAP tau-based fusion proteins skew microtubule dynamics towards cell cycle arrest and apoptosis. This biological activity makes rapidly proliferating cells (e.g., cancer and inflammatory cells) an excellent target for MAP tau-based targeted treatments. Their superior selectivity for proliferating cells confers additional selectivity towards upregulated tumor-associated antigens at their surface, thereby preventing off-target related toxicity against normal cells bearing tumor-associated antigens at physiologically normal to low levels. In this review, we highlight recent findings on MAP tau-based targeted cytolytic fusion proteins reported in preclinical immunotherapeutic studies.

7.
Cancer Lett ; 372(2): 201-9, 2016 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-26806809

RESUMO

Triple-negative breast cancer (TNBC) is associated with poor prognosis and high prevalence among young premenopausal women. Unlike in other breast cancer subtypes, no targeted therapy is currently available. Overexpression of epithelial cell adhesion molecule (EpCAM) in 60% of TNBC tumors correlates with poorer prognosis and is associated with cancer stem cell phenotype. Thus, selective elimination of EpCAM(+) TNBC tumor cells is of clinical importance. Therefore, we constructed a fully human targeted cytolytic fusion protein, designated GbR201K-αEpCAM(scFv), in which an EpCAM-selective single-chain antibody fragment (scFv) is genetically fused to a granzyme B (Gb) mutant with reduced sensitivity to its natural inhibitor serpin B9. In vitro studies confirmed its specific binding, internalization and cytotoxicity toward a panel of EpCAM-expressing TNBC cells. Biodistribution kinetics and tumor-targeting efficacy using MDA-MB-468 cells in a human TNBC xenograft model in mice revealed selective accumulation of GbR201K-αEpCAM(scFv) in the tumors after i.v. injection. Moreover, treatment of tumor-bearing mice demonstrated a prominent inhibition of tumor growth of up to 50 % in this proof-of-concept study. Taken together, our results indicate that GbR201K-αEpCAM(scFv) is a promising novel targeted therapeutic for the treatment of TNBC.


Assuntos
Apoptose/efeitos dos fármacos , Moléculas de Adesão Celular/antagonistas & inibidores , Granzimas/farmacologia , Imunoterapia/métodos , Imunotoxinas/farmacologia , Anticorpos de Cadeia Única/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Carga Tumoral/efeitos dos fármacos , Animais , Especificidade de Anticorpos , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/metabolismo , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/imunologia , Moléculas de Adesão Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Molécula de Adesão da Célula Epitelial , Feminino , Granzimas/genética , Granzimas/farmacocinética , Células HEK293 , Humanos , Imunotoxinas/genética , Imunotoxinas/imunologia , Imunotoxinas/farmacocinética , Camundongos Endogâmicos BALB C , Camundongos Nus , Mutação , Proteínas Recombinantes de Fusão/farmacologia , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/imunologia , Anticorpos de Cadeia Única/farmacocinética , Distribuição Tecidual , Transfecção , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Oncotarget ; 7(41): 67166-67174, 2016 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-27564103

RESUMO

Fc gamma receptor I (FcγRI, CD64) is a well-known target antigen for passive immunotherapy against acute myeloid leukemia and chronic myelomonocytic leukemia. We recently reported the preclinical immunotherapeutic potential of microtubule associated protein tau (MAP) against a variety of cancer types including breast carcinoma and Hodgkin's lymphoma. Here we demonstrate that the CD64-directed human cytolytic fusion protein H22(scFv)-MAP kills ex vivo 15-50% of CD64+ leukemic blasts derived from seven myeloid leukemia patients. Furthermore, in contrast to the nonspecific cytostatic agent paclitaxel, H22(scFv)-MAP showed no cytotoxicity towards healthy CD64+ PBMC-derived cells and macrophages. The targeted delivery of this microtubule stabilizing agent therefore offers a promising new strategy for specific treatment of CD64+ leukemia.


Assuntos
Antineoplásicos/farmacologia , Leucemia Mieloide Aguda , Proteínas Associadas aos Microtúbulos/farmacologia , Terapia de Alvo Molecular/métodos , Receptores de IgG , Idoso , Idoso de 80 Anos ou mais , Células Cultivadas , Feminino , Humanos , Imunotoxinas/farmacologia , Masculino , Pessoa de Meia-Idade , Proteínas Recombinantes de Fusão/farmacologia
9.
MAbs ; 7(5): 853-62, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26218624

RESUMO

Macrophages are key players in controlling the immune response that can adapt to microenvironmental signals. This results in distinct polarization states (classical M1 or alternative M2), that play a differential role in immune regulation. In general, the M1 contribute to onset of inflammation, whereas the M2 orchestrate resolution and repair, whereby failure to switch from predominantly M1 to M2 reinforces a pro-inflammatory environment and chronic inflammation. Here, we show selective elimination of M1 macrophages in vitro by a range of CD64-targeted immunotoxins, including H22(scFv)-ETA'. After re-polarization of already polarized macrophages, still only M1 polarization showed sensitivity toward CD64-directed immunotoxins. The selectivity for M1 was found linked to reduced endosomal protease activity in M1 macrophages as demonstrated by inhibition of endosomal proteases. Using the H22(scFv)-ETA' in a transgenic mouse model for chronic cutaneous inflammation, the M1 specificity was confirmed in vivo and a beneficial effect on inflammation demonstrated. Also ex vivo on skin biopsies from atopic dermatitis and diabetes type II patients with chronically-inflamed skin, a clear M1 specific effect was found. This indicates the potential relevance for human application. Our data show that targeting M1 macrophages through CD64 can be instrumental in developing novel intervention strategies for chronic inflammatory conditions.


Assuntos
Dermatite/imunologia , Macrófagos/imunologia , Receptores de IgG/imunologia , Animais , Diferenciação Celular/imunologia , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Macrófagos/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Camundongos Transgênicos
10.
Cancer Lett ; 365(2): 149-55, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25888452

RESUMO

The treatment of rhabdomyosarcoma (RMS) is challenging, and the prognosis remains especially poor for high-grade RMS with metastasis. The conventional treatment of RMS is based on multi-agent chemotherapy combined with resection and radiotherapy, which are often marked by low success rate. Alternative therapeutic options include the combination of standard treatments with immunotherapy. We generated a microtubule-associated protein (MAP)-based fully human cytolytic fusion protein (hCFP) targeting the fetal acetylcholine receptor, which is expressed on RMS cells. We were able to express and purify functional scFv35-MAP from Escherichia coli cells. Moreover, we found that scFv35-MAP is rapidly internalized by target cells after binding its receptor, and exhibits specific cytotoxicity toward FL-OH1 and RD cells in vitro. We also confirmed that scFv35-MAP induces apoptosis in FL-OH1 and RD cells. The in vivo potential of scFv35-MAP will need to be considered in further studies.


Assuntos
Apoptose/efeitos dos fármacos , Antagonistas Colinérgicos/farmacologia , Proteínas Associadas aos Microtúbulos/genética , Proteínas Recombinantes de Fusão/farmacologia , Rabdomiossarcoma/tratamento farmacológico , Camptotecina/farmacologia , Linhagem Celular Tumoral , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Imunoterapia , Ligação Proteica , Receptores Colinérgicos/metabolismo , Proteínas Recombinantes de Fusão/genética , Células U937
11.
MAbs ; 6(5): 1283-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25517313

RESUMO

Tumor necrosis factor (TNF) is a pro-inflammatory cytokine that plays a critical role in many inflammatory diseases. Soluble TNF can be neutralized by monoclonal antibodies (mAbs), and this is a widely-used therapeutic approach. However, some patients do not respond to anti-TNF therapy due to the increased expression of CD64 on monocytes and macrophages. A recent study has shown that CD64 captures anti-TNF mAbs via their Fcγ domain, which induces the transcription of pro-inflammatory genes. Specific blocking of CD64 could therefore be a promising strategy to improve the response to anti-TNF therapy. We used the CD64-specific antibody fragment H22(scFv) and tested its activity against the human CD64(+) cell line HL-60. When stimulated with interferon gamma (IFN-γ), these cells represent a pro-inflammatory phenotype of the monocyte/macrophage lineage. We found that H22(scFv) binds selectively to and blocks CD64, preventing the capture of anti-TNF mAb. Importantly, H22(scFv) itself does not induce CD64 activation. We also found that transmembrane TNF on HL-60 cells stimulated with IFN-γ also contributes to the capture of anti-TNF mAb, although via their Fab domain. In conclusion, the specific blocking of CD64 by H22(scFv) could be used a possible anti-inflammatory mechanism for potentiating the effect of anti-TNF antibodies.


Assuntos
Anticorpos Monoclonais/imunologia , Receptores de IgG/imunologia , Anticorpos de Cadeia Única/imunologia , Fator de Necrose Tumoral alfa/imunologia , Anticorpos Monoclonais/farmacologia , Afinidade de Anticorpos/imunologia , Western Blotting , Linhagem Celular Tumoral , Citometria de Fluxo , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/imunologia , Células HL-60 , Humanos , Imunoglobulina G/imunologia , Imunoglobulina G/farmacologia , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Interferon gama/imunologia , Interferon gama/farmacologia , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Interleucina-8/genética , Interleucina-8/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Monócitos/metabolismo , Ligação Proteica/imunologia , Receptores de IgG/antagonistas & inibidores , Receptores de IgG/metabolismo , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/farmacologia , Fator de Necrose Tumoral alfa/genética
12.
Mol Cancer Ther ; 13(9): 2194-202, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24980949

RESUMO

In normal epithelia, the epithelial cell adhesion molecule (EpCAM) expression is relatively low and only present at the basolateral cell surface. In contrast, EpCAM is aberrantly overexpressed in various human carcinomas. Therefore, EpCAM is considered to be a highly promising target for antibody-based cancer immunotherapy. Here, we present a new and fully human cytolytic fusion protein (CFP), designated "anti-EpCAM(scFv)-MAP," that is comprised of an EpCAM-specific antibody fragment (scFv) genetically fused to the microtubule-associated protein tau (MAP). Anti-EpCAM(scFv)-MAP shows potent EpCAM-restricted proapoptotic activity toward rapidly proliferating carcinoma cells. In vitro assays confirmed that treatment with anti-EpCAM(scFv)-MAP resulted in the colocalization and stabilization of microtubules, suggesting that this could be the potential mode of action. Dose-finding experiments indicated that anti-EpCAM(scFv)-MAP is well tolerated in mice. Using noninvasive far-red in vivo imaging in a tumor xenograft mouse model, we further demonstrated that anti-EpCAM(scFv)-MAP inhibited tumor growth in vivo. In conclusion, our data suggest that anti-EpCAM(scFv)-MAP may be of therapeutic value for the targeted elimination of EpCAM(+) carcinomas.


Assuntos
Antígenos de Neoplasias/química , Moléculas de Adesão Celular/química , Neoplasias/terapia , Proteínas tau/química , Animais , Apoptose , Carcinoma/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Molécula de Adesão da Célula Epitelial , Feminino , Células HEK293 , Humanos , Imunoterapia/métodos , Concentração Inibidora 50 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transplante de Neoplasias , Fases de Leitura Aberta , Ligação Proteica , Proteínas Recombinantes de Fusão/química , Tubulina (Proteína)/química
13.
Mol Biotechnol ; 54(3): 1056-68, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23097175

RESUMO

Antibodies and antibody-based drugs are currently the fastest-growing class of therapeutics. Over the last three decades, more than 30 therapeutic monoclonal antibodies and derivatives thereof have been approved for and successfully applied in diverse indication areas including cancer, organ transplants, autoimmune/inflammatory disorders, and cardiovascular disease. The isotype of choice for antibody therapeutics is human IgG, whose Fc region contains a ubiquitous asparagine residue (N297) that acts as an acceptor site for N-linked glycans. The nature of these glycans can decisively influence the therapeutic performance of a recombinant antibody, and their absence or modification can lead to the loss of Fc effector functions, greater immunogenicity, and unfavorable pharmacokinetic profiles. However, recent studies have shown that aglycosylated antibodies can be genetically engineered to display novel or enhanced effector functions and that favorable pharmacokinetic properties can be preserved. Furthermore, the ability to produce aglycosylated antibodies in lower eukaryotes and bacteria offers the potential to broaden and simplify the production platforms and avoid the problem of antibody heterogeneity, which occurs when mammalian cells are used for production. In this review, we discuss the importance of Fc glycosylation focusing on the use of aglycosylated and glyco-engineered antibodies as therapeutic proteins.


Assuntos
Anticorpos Monoclonais/química , Fragmentos Fc das Imunoglobulinas/química , Polissacarídeos/química , Animais , Anticorpos Monoclonais/metabolismo , Glicosilação , Humanos , Fragmentos Fc das Imunoglobulinas/metabolismo , Polissacarídeos/metabolismo
14.
Mol Biotechnol ; 53(3): 326-35, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22427250

RESUMO

Monoclonal antibodies (mAbs) are the fastest growing class of biopharmaceuticals reflecting their diverse applications in research and the clinic. The correct glycosylation of mAbs is required to elicit effector functions such as complement-dependent and antibody-dependent cell-mediated cytotoxicity, although these may be undesirable for the treatment of certain chronic diseases. To gain insight into the properties of glycan-deficient mAbs, we generated and characterized six different aglycosylated human IgG1 mAbs (carrying the N297A mutation) and compared them to their glycosylated counterparts. We found no differences in solubility or heterogeneity, and all mAbs the remained stable in stress tests at 4 and 37 °C. Surface plasmon resonance spectroscopy showed no differences in binding affinity, and the in vivo terminal serum half-life and plasma clearance were similar in rats. However, differential scanning calorimetry revealed that the aglycosylated mAbs contained a less stable C(H)2 domain and they were also significantly more susceptible to pH-induced aggregation. We conclude that aglycosylated mAbs are functionally equivalent to their glycosylated counterparts and could be particularly suitable for certain therapeutic applications, such as the treatment of chronic diseases.


Assuntos
Anticorpos Monoclonais/farmacocinética , Imunoglobulina G/metabolismo , Animais , Anticorpos Monoclonais/imunologia , Varredura Diferencial de Calorimetria , Clonagem Molecular , Regulação da Expressão Gênica , Glicosilação , Células HEK293 , Meia-Vida , Humanos , Imunoglobulina G/imunologia , Masculino , Ratos , Ratos Wistar , Ressonância de Plasmônio de Superfície
15.
Cancer Lett ; 341(2): 178-85, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23973499

RESUMO

Immunotoxins are promising targeted therapeutic agents comprising an antibody-based ligand that specifically binds to diseased cells, and a pro-apoptotic protein. Toxic components from bacteria or plants can trigger a neutralizing immune response, so that human effector molecules are more suitable. In this context, the protease granzyme B has been successfully tested in cytotoxicity assays against different cancer cells in vitro and in vivo. Our aim here was to introduce granzyme M as an alternative and novel component of human cytolytic fusion proteins. We fused it to the humanized single-chain antibody fragment (scFv) H22 which specifically binds to CD64, an FcγRI receptor overexpressed on activated myeloid cells and leukemic cells. We show that the humanized cytolytic fusion protein Gm-H22(scFv) specifically targets the acute myeloid leukemia cell line HL60 in vitro and is cytotoxic with an IC50 between 1.2 and 6.4 nM. These findings were confirmed ex vivo using leukemic primary cells from patients, which were killed by granzyme M despite the presence of the granzyme B inhibitor serpin B9. In conclusion, granzyme M is a promising new cell-death inducing component for hCFPs because it specifically and efficiently kills target cells when fused to a targeting component.


Assuntos
Granzimas/imunologia , Imunotoxinas/imunologia , Proteínas Recombinantes de Fusão/imunologia , Anticorpos de Cadeia Única/imunologia , Apoptose/efeitos dos fármacos , Apoptose/imunologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/imunologia , Relação Dose-Resposta a Droga , Citometria de Fluxo , Granzimas/genética , Granzimas/metabolismo , Células HEK293 , Células HL-60 , Humanos , Imunotoxinas/farmacologia , Células K562 , Leucemia/imunologia , Leucemia/metabolismo , Leucemia/patologia , Receptores de IgG/imunologia , Receptores de IgG/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/metabolismo , Células Tumorais Cultivadas
16.
Toxins (Basel) ; 4(9): 676-94, 2012 09.
Artigo em Inglês | MEDLINE | ID: mdl-23105975

RESUMO

Diseases caused by chronic inflammation (e.g., arthritis, multiple sclerosis and diabetic ulcers) are multicausal, thus making treatment difficult and inefficient. Due to the age-associated nature of most of these disorders and the demographic transition towards an overall older population, efficient therapeutic intervention strategies will need to be developed in the near future. Over the past decades, elimination of activated macrophages using CD64-targeting immunotoxins has proven to be a promising way of resolving inflammation in animal models. More recent data have shown that the M1-polarized population of activated macrophages in particular is critically involved in the chronic phase. We recapitulate the latest progress in the development of IT. These have advanced from full-length antibodies, chemically coupled to bacterial toxins, into single chain variants of antibodies, genetically fused with fully human enzymes. These improvements have increased the range of possible target diseases, which now include chronic inflammatory diseases. At present there are no therapeutic strategies focusing on macrophages to treat chronic disorders. In this review, we focus on the role of different polarized macrophages and the potential of CD64-based IT to intervene in the process of chronic inflammation.


Assuntos
Imunotoxinas/uso terapêutico , Inflamação/tratamento farmacológico , Macrófagos/imunologia , Receptores de IgG/imunologia , Animais , Doença Crônica , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa