Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(18)2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39336193

RESUMO

Material development in acoustic engineering plays a significant role in various applications, such as industrial noise control. It is important and relevant to consider alternative materials capable of reducing noise levels in different frequency ranges. One commonly used material in engineering structures is epoxy adhesive compositions. Favoring the use of adhesive compositions are their main characteristics, including weight reduction in structures, corrosion resistance, relatively low manufacturing costs, and high mechanical strength. This paper aims to discuss the relationship between the mechanical properties of modified epoxy adhesives, their structure, and sound absorption efficiency. The subjects of this study were specimens of an epoxy composition in the cured state. Acoustic absorption coefficients were evaluated using a dual-microphone impedance tube, and tensile, compressive, and bending strength properties were determined using a testing machine. The impact strength of the compositions was also investigated. An analysis of the structure of the adhesives in the cured state was carried out using a scanning electron microscope. The test specimens were made from Epidian 5 epoxy resin cured with a polyamide PAC curing agent. Nanobent ZR2 aluminosilicate in an amount of 1%, CaCO3 calcium carbonate in an amount of 5%, and CWZ-22 activated carbon in an amount of 20% were used as modifiers. The conducted studies revealed that the highest tensile strength was obtained for the adhesive composition with the addition of ZR2 filler. The highest compressive strength was exhibited by the adhesive composition with the addition of CWZ-22 filler. The highest flexural strength was demonstrated by the unmodified composition. For all the tested adhesive compositions, low sound absorption values were achieved, with a maximum of approximately 0.18. From the perspective of the reduction index R, it was observed that these samples performed better in reduction than in absorption. The best values were achieved in the compositions modified with CaCO3.

2.
Polymers (Basel) ; 15(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36679275

RESUMO

The aim of this research was to evaluate the effect of untreated and 5% aqueous NaOH solution-treated filler of the plant Jatropha Curcas L. on the mechanical properties of adhesive bonds, especially in terms of their service life at different amplitudes of cyclic loading. As a result of the presence of phorbol ester, which is toxic, Jatropha oilseed cake cannot be used as livestock feed. The secondary aim was to find other possibilities for the utilization of natural waste materials. Another use is as a filler in polymer composites, that is, in composite adhesive layers. The cyclic loading of the adhesive bonds was carried out for 1000 cycles in two amplitudes, that is, 5-30% of the maximum force and 5-50% of the maximum force, which was obtained by the static tensile testing of the adhesive bonds with unmodified filler. The static tensile test showed an increase in the shear strength of the adhesive bonds with alkali-treated filler compared to the untreated filler by 3-41%. The cyclic test results did not show a statistically significant effect of the alkaline treatment of the filler surface on the service life of the adhesive bonds. Positive changes in the strain value between adhesive bonds with treated and untreated filler were demonstrated at cyclic stress amplitudes of 5-50%. SEM analysis showed the presence of interlayer defects in the layers of the tested materials, which are related to the oil-based filler used.

3.
Materials (Basel) ; 16(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36770229

RESUMO

The ability of materials to withstand environmental influences is a frequent necessity in many industries. Special requirements are imposed by such industries where surfaces are affected by acidity during the processing or storage of products. In such cases, when the basic surface is exposed to chemical influences, it is possible to use enamel coatings, which, with their properties, guarantee the protection of the surface and achieve the required service life of the material. This article deals mainly with the interaction between the base material and the enamel and its resistance to wear between the original and the renovated surface caused by local heating. The article presents a methodical procedure for the preparation of test specimens with an enamel layer prepared by AWJ cutting, eliminating its damage. There are minimal differences in the microstructure between the original and the renovated surface due to the production technique. The renovated enamel surface had more bubbles of a larger size than the original surface. Good adhesion between the base metal material (substrate) and the ground coat was demonstrated. The tested surfaces demonstrated high resistance to intensive abrasion conditions with low linear wear increments.

4.
Polymers (Basel) ; 14(5)2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35267858

RESUMO

The research is focused on the evaluation of mechanical properties of adhesive bonds with a composite layer of adhesive to increase their service life (safety) under cyclic loading of different intensities. Cyclic loading represents a frequent cause of adhesive bond failure and, thus, a reduction in their service life. Waste from the production of coconut oil, that is, coconut shells in the form of particles, was used as a filler. Coconut shells are in most cases incinerated or otherwise uselessly incinerated, but they can also be used as a natural filler. Cyclic loading (quasi-static tests) was performed for 1000 cycles in two intensities, that is, 5-30% (157-940 N) of maximum force and 5-50% (157-1567 N) of maximum force. The results of the experiment showed a positive effect of the added filler, especially at an intensity of 5-50%, when the service life of adhesive bonds with a composite adhesive layer (AB10, AB20, AB30) increased compared to adhesive bonds without added AB0 filler, which did not withstand the given intensity. A more pronounced viscoelastic behavior of adhesive bonds was demonstrated at an intensity of 5-50% between the 1st and 1000th cycle. SEM analysis showed reduced wetting of the filler and matrix and delamination due to cyclic loading.

5.
Polymers (Basel) ; 14(7)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35406175

RESUMO

Additive production is currently perceived as an advanced technology, where intensive research is carried out in two basic directions-modifications of existing printing materials and the evaluation of mechanical properties depending on individual production parameters and the technology used. The current research is focused on the evaluation of the fatigue behavior of 3D-printed test specimens made of pure PLA and PLA reinforced with filler based on pinewood, bamboo, and cork using FDM (fused deposition modeling) technology. This research was carried out in response to the growing demand for filaments from biodegradable materials. This article describes the results of tensile fatigue tests and image analysis of the fracture surface determined by the SEM method. Biodegradable PLA-based materials have their limitations that influence their applicability in practice. One of these limitations is fatigue life, which is the cyclic load interval exceeding 50% of the tensile strength determined in a static test. Comparison of the cyclic fatigue test results for pure PLA and PLA reinforced with natural reinforcement, e.g., pinewood, bamboo, and cork, showed that, under the same loading conditions, the fatigue life of the 3D-printed specimens was similar, i.e., the filler did not reduce the material's ability to respond to low-cycle fatigue. Cyclic testing did not have a significant effect on the change in tensile strength and associated durability during this loading interval for PLA-based materials reinforced with biological filler. Under cyclic loading, the visco-elastic behavior of the tested materials was found to increase with increasing values of cyclic loading of 30%, 50% and 70%, and the permanent deformation of the tested materials, i.e., viscoelastic behavior (creep), also increased. SEM analysis showed the presence of porosity, interlayer disturbances, and at the same time good interfacial compatibility of PLA with the biological filler.

6.
Polymers (Basel) ; 14(22)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36433057

RESUMO

In this paper, the fatigue behavior of polylactic acid (PLA) material with bamboo filler printed by 3D additive printing using fused deposition modelling (FDM) technology at different infill densities and print nozzle diameters is investigated. The mechanical test results are supported by the findings from SEM image analysis. The fatigue behavior was tested at four consecutive 250 cycles at loads ranging from 5 to 20, 30, 40, and 50% based on the limits found in the static tensile test. The results of the static tensile and low-cycle fatigue tests confirmed significant effects of infill density of 60%, 80%, and 100% on the tensile strength of the tested specimens. In particular, the research results show a significant effect of infill density on the fatigue properties of the tested materials. The influence of cyclic tests resulted in the strengthening of the tested material, and at the same time, its viscoelastic behavior was manifested. SEM analysis of the fracture surface confirmed a good interaction between the PLA matrix and the bamboo-based filler using nozzle diameters of 0.4 and 0.6 mm and infill densities of 60%, 80%, and 100%. Low-cycle testing showed no reductions in the mechanical properties and fatigue lives of the 3D printed samples.

7.
Materials (Basel) ; 14(2)2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33467604

RESUMO

The proper process of preparing an adhesive composition has a significant impact on the degree of dispersion of the composition ingredients in the matrix, as well as on the degree of aeration of the resulting composition, which in turn directly affects the strength and functional properties of the obtained adhesive compositions. The paper presents the results of tensile strength tests and SEM microphotographs of the adhesive composition of Epidian 57 epoxy resin with Z-1 curing agent, which was modified using three fillers NanoBent ZR2 montmorillonite, CaCO3 calcium carbonate and CWZ-22 active carbon. For comparison purposes, samples made of unmodified composition were also tested. The compositions were prepared with the use of six mixing methods, with variable parameters such as type of mixer arm, deaeration and epoxy resin temperature. Then, three mixing speeds were applied: 460, 1170 and 2500 rpm. The analyses of the obtained results showed that the most effective tensile results were obtained in the case of mixing with the use of a dispersing disc mixer with preliminary heating of the epoxy resin to 50 °C and deaeration of the composition during mixing. The highest tensile strength of adhesive compositions was obtained at the highest mixing speed; however, the best repeatability of the results was observed at 1170 rpm mixing speed. Based on a comparison test of average values, it was observed that, in case of modified compositions, the values of average tensile strength obtained at mixing speeds at 1170 and 2500 rpm do not differ significantly with the assumed level of significance α = 0.05.

8.
Materials (Basel) ; 14(24)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34947137

RESUMO

The article focuses on the machining of polymeric materials polypropylene (PP) and un-plasticized poly vinyl chloride (PVC-U) after surface treatment with polyurethane and acrylate coatings using waterjet technology. Two types of waterjet technologies, abrasive waterjet (AWJ) and waterjet without abrasive (WJ), were used. The kerf width and its taper angle, at the inlet and outlet of the waterjet from the workpiece, were evaluated. Significant differences between AWJ and WJ technology were found. WJ technology proved to be less effective due to the creation of a nonuniform cutting gap and significant burrs. AWJ technology was shown to be more efficient, i.e., more uniform cuts were achieved compared to WJ technology, especially at a cutting head traverse speed of 50 mm·min-1. The most uniform kerf width or taper angle was achieved for PP + MOBIHEL (0.09°). The materials (PP and PVC-U) with the POLURAN coating had higher values of the taper angle of the cutting gap than the material with the MOBIHEL coating at all cutting head traverse speeds. The SEM results showed that the inappropriate cutting head traverse speed and the associated WJ technology resulted in significant destruction of the material to be cut on the underside of the cut. Delamination of the POLURAN and MOBIHEL coatings from the base material PP and PVC-U was not demonstrated by SEM analysis over the range of cutting head traverse speeds, i.e., 50 to 1000 mm·min-1.

9.
Materials (Basel) ; 14(10)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34070001

RESUMO

Composite materials with natural fillers have been increasingly used as an alternative to synthetically produced materials. This trend is visible from a representation of polymeric composites with natural cellulose fibers in the automotive industry of the European Union. This trend is entirely logical, owing to a preference for renewable resources. The experimental program itself follows pronounced hypotheses and focuses on a description of the mechanical properties of untreated and alkali-treated natural vegetable fibers, coconut and abaca fibers. These fibers have great potential for use in composite materials. The results and discussion sections contribute to an introduction of an individual methodology for mechanical property assessment of cellulose fibers, and allows for a clear definition of an optimal process of alkalization dependent on the content of hemicellulose and lignin in vegetable fibers. The aim of this research was to investigate the influence of alkali treatment on the surface microstructure and tensile properties of coir and abaca fibers. These fibers were immersed into a 5% solution of NaOH at laboratory temperature for a time interval of 30 min, 1 h, 2 h, 3 h, 6 h, 12 h, 24 h, and 48 h, rinsed and dried. The fiber surface microstructures before and after the alkali treatment were evaluated by SEM (scanning electron microscopy). SEM analysis showed that the alkali treatment in the NaOH solution led to a gradual connective material removal from the fiber surface. The effect of the alkali is evident from the visible changes on the surface of the fibers.

10.
Polymers (Basel) ; 13(17)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34502912

RESUMO

This study is focused on the mechanical properties and service life (safety) evaluation of hybrid adhesive bonds with shaped overlapping geometry (wavy-lap) and 100% natural cotton fabric used as reinforcement under cyclic loading using various intensities. Cyclic loading were implemented between 5-50% (267-2674 N) and 5-70% (267-3743 N) from the maximum strength (5347 N) measured by static tensile test. The adhesive bonds were loaded by 1000 cycles. The test results demonstrated a positive influence of the used reinforcement on the mechanical properties, especially during the cyclic loading. The adhesive bonds Tera-Flat withstood the cyclic load intensity from 5-70% (267-3743 N). The shaped overlapping geometry (wavy-lap bond) did not have any positive influence on the mechanical performance, and only the composite adhesive bonds Erik-WH1 and Tera-WH1 withstood the complete 1000 cycles with cyclic loading values between 5-50% (267-2674 N). The SEM analysis results demonstrated a positive influence on the fabric surface by treatment with 10% NaOH aqueous solution. The unwanted compounds (lignin) were removed. Furthermore, a good wettability has been demonstrated by the bonded matrix material. The SEM analysis also demonstrated micro-cracks formation, with subsequent delamination of the matrix/reinforcement interface caused by cyclic loading. The experimental research was conducted for the analysis of hybrid adhesive bonds using curved/wavy overlapping during both static and cyclic loading.

11.
Polymers (Basel) ; 12(12)2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33317210

RESUMO

This research evaluates the mechanical properties of hybrid adhesive bonds with various 100% cotton fabrics in static and quasi-static conditions and the influence of alkali surface treatment (NaOH) of the cotton fabrics on the mechanical properties. Biological fibers in polymers are characterized by low wettability with the matrix, which decreases mechanical properties. Adhesive bonds usually operate in cyclic stress, which causes irreversible failure before maximal strength. In this paper, a quasi-static test was used to load the adhesive bonds in 5-50% (192-1951 N) and 5-70% (192-2732 N) intervals with 1000 cycles. The results of SEM analysis showed good wettability of alkali treated cotton fabric with NaOH solution in hybrid adhesive bonds. The static test proved the influence of reinforcing cotton fabrics on shear tensile strength against pure resin, i.e., sample Erik up to 19% on 14.90 ± 1.15 MPa and sample Tera up to 21% on 15.28 ± 1.05 MPa. The adhesive bonds with pure resin did not resist either quasi-static tests. Reinforcing cotton fabrics resisted both quasi-static tests, even shear tensile strength increases up to 10% on 16.34 ± 1.24 MPa for the fabric Erik. The results of strain difference of adhesive bonds with Tera and Erik confirmed that a lower value of the difference during cyclic loading positively influenced the ultimate shear tensile strength.

12.
Polymers (Basel) ; 12(3)2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-32183033

RESUMO

The use of acoustic panels is one of the most important methods for sound insulation in buildings. Moreover, it has become increasingly important to use green/natural origin materials in this area to reduce environmental impact. This study focuses on the investigation of acoustic, mechanical and thermal properties of natural fiber waste reinforced green epoxy composites. Three different types of fiber wastes were used, e.g., cotton, coconut and sugarcane with epoxy as the resin. Different fiber volume fractions, i.e., 10%, 15% and 20% for each fiber were used with a composite thickness of 3 mm. The sound absorption coefficient, impact strength, flexural strength, thermal conductivity, diffusivity, coefficient of thermal expansion and thermogravimetric properties of all samples were investigated. It has been found that by increasing the fiber content, the sound absorption coefficient also increases. The coconut fiber-based composites show a higher sound absorption coefficient than in the other fiber-reinforced composites. The impact and flexural strength of the cotton fiber-reinforced composite samples are higher than in other samples. The coefficient of thermal expansion of the cotton fiber-based composite is also higher than the other composites. Thermogravimetric analysis revealed that all the natural fiber-reinforced composites can sustain till 300 °C with a minor weight loss. The natural fiber-based composites can be used in building interiors, automotive body parts and household furniture. Such composite development is an ecofriendly approach to the acoustic world.

13.
Polymers (Basel) ; 12(6)2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32580294

RESUMO

The paper is focused on the research of the cyclic loading of hybrid adhesive bonds based on eggshell microparticles in polymer composite. The aim of the research was to characterize the behavior of hybrid adhesive bonds with composite adhesive layer in quasi-static tests. An epoxy resin was used as the matrix and microparticles of eggshells were used as the filler. The adhesive bonds were exposed to cyclic loading and their service life and mechanical properties were evaluated. Testing was performed by 1000 cycles at 5-30% (165-989 N) and 5-70% (165-2307 N) of the maximum load of the filler-free bond in the static test. The results of the research show the importance of cyclic loading on the service life and mechanical properties of adhesive bonds. Quasi-static tests demonstrated significant differences between measured intervals of cyclic loading. All adhesive bonds resisted 1000 cycles of the quasi-static test with an interval loading 5-30%. The number of completed quasi-static tests with the interval loading 5-70% was significantly lower. The filler positively influenced the service life of adhesive bonds at a higher amount of quasi-static tests, i.e., the safety of adhesive bonds increased. The filler had a positive effect on adhesive bonds ABF2, where the strength significantly increased up to 20.26% at the loading of 5-30% against adhesive bonds ABF0. A viscoelasticity characteristic (creep) of the adhesive layer occurred at higher values of loading, i.e., between loading 5-70%. The viscoelasticity behavior did not occur at lower values of loading, i.e., between loading 5-30%.

14.
Polymers (Basel) ; 11(7)2019 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-31261974

RESUMO

This paper deals with a research focused on utilization of microparticle and short-fiber filler based on cotton post-harvest line residues in an area of polymeric composites. Two different fractions of the biological filler (FCR-reinforced cotton filler) of 20 and 100 µm and the filler with short fibers of a length of 700 µm were used in the research. The aim of the research was to evaluate mechanical characteristics of composites and adhesive bonds for the purpose of gaining new pieces of knowledge which will be applicable in the area of material engineering and assessing application possibilities of residues coming into being from agricultural products processing. Mechanical properties of the composite material produced by a vacuum infusion and tested at temperatures 20, 40, and 60 °C and adhesive bonds which were exposed to a low-cyclic loading, i.e., 1000 cycles at 30% to 70% from reference value of the maximum strength, were evaluated. Composite systems with the FCR adjusted in 5% water solution of NaOH showed higher strength values on average compared to untreated FCR. Unsuitable size of the FCR led to a deterioration of the strength. The filler in the form of 700 FCR microfibers showed itself in a positive way to composite materials, and the particle in the form of 20 FCR did the same to adhesive bonds. Results of adhesive bond cyclic tests at higher stress values (70%) demonstrated viscoelastic behavior of the adhesive layer.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa