Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(21)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37958530

RESUMO

The high prevalence of kidney diseases and the low identification rate of drug nephrotoxicity in preclinical studies reinforce the need for representative yet feasible renal models. Although in vitro cell-based models utilizing renal proximal tubules are widely used for kidney research, many proximal tubule cell (PTC) lines have been indicated to be less sensitive to nephrotoxins, mainly due to altered expression of transporters under a two-dimensional culture (2D) environment. Here, we selected HK-2 cells to establish a simplified three-dimensional (3D) model using gelatin sponges as scaffolds. In addition to cell viability and morphology, we conducted a comprehensive transcriptome comparison and correlation analysis of 2D and 3D cultured HK-2 cells to native human PTCs. Our 3D model displayed stable and long-term growth with a tubule-like morphology and demonstrated a more comparable gene expression profile to native human PTCs compared to the 2D model. Many missing or low expressions of major genes involved in PTC transport and metabolic processes were restored, which is crucial for successful nephrotoxicity prediction. Consequently, we established a cost-effective yet more representative model for in vivo PTC studies and presented a comprehensive transcriptome analysis for the systematic characterization of PTC lines.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Gelatina , Humanos , Gelatina/farmacologia , Transcriptoma , Túbulos Renais Proximais/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Linhagem Celular , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/metabolismo , Células Epiteliais/metabolismo , Células Cultivadas
2.
Microsurgery ; 41(8): 762-771, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34617323

RESUMO

INTRODUCTION: The medical demand for lymphedema treatment is huge since the disease mechanism remains unclear, and management are difficult. Our purpose was to develop a reliable lymphedema model mimicking the clinical scenario and allows a microsurgical approach. MATERIALS AND METHODS: Male Lewis rats weighing 400 to 450 g were used to create lymphedema with groin and popliteal lymph node dissection and creation of 5 mm circumferential skin defect (n = 6). A skin incision was made and closed primarily for control group (n = 5). Evaluation included indocyanine green (ICG) lymphangiography 1 and 2 months postoperatively, volume difference between bilateral hindlimbs measured using micro-CT, and the skin was harvested for histological evaluation 2 months postoperatively. RESULTS: Larger volume differences present in the lymphedema group (17.50 ± 7.76 vs. 3.73 ± 2.66%, p < .05). ICG lymphangiography indicated dermal backflow only in the lymphedema group. Increased thickness of the epidermis was noted in lymphedema group (28.50 ± 12.61 µm vs. 15.10 ± 5.41 µm, p < .0001). More CD45+ (35.6 ± 26.68 vs. 2.8 ± 4.23 cells/high power field [HPF], p < .0001), CD3+ (38.39 ± 20.17 vs. 9.73 ± 8.62 cells/HPF, p < .0001), and CD4+ cell infiltration (11.7 ± 7.71 vs. 2.0 ± 2.67 cells/HPF, p < .0001) were observed in the lymphedema group. Collagen type I deposition was more in the lymphedema group (0.15 ± 0.06 vs. 0.07 ± 0.03, p < .0005). CONCLUSIONS: A rat lymphedema model was successfully established. The model can be applied in lymphedema related research.


Assuntos
Linfedema , Animais , Excisão de Linfonodo , Linfonodos , Linfedema/etiologia , Linfedema/cirurgia , Linfografia , Masculino , Ratos , Ratos Endogâmicos Lew
3.
Aesthet Surg J ; 41(10): NP1323-NP1336, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34043750

RESUMO

BACKGROUND: Recently, there has been increasing research interest in identifying the effect of liposuction procedures on fat graft survival in order to clarify whether different harvest techniques affect the quality of fat grafts. OBJECTIVES: The aim of this study was to investigate the effect of 2 liposuction methods on the survival and regeneration potential of grafted fat tissue. The proliferation and differentiation potentials of adipose-derived stem cells (ASCs) isolated by both methods was also investigated. METHODS: Fat grafts were collected from patients who underwent liposuction procedures by 2 different methods: traditional suction-assisted liposuction (TSAL) and vibration amplification of sound energy at resonance (VASER). One portion of the lipoaspirates was implanted into the subcutaneous layer of nu mice for 4 and 12 weeks. ASCs were isolated from the other portion of the lipoaspirate and subjected to proliferation and differentiation assays. RESULTS: Although in vivo fat grafting presented similar adipose tissue survival for the 2 different liposuction methods, more angiogenesis and less fibrosis was observed in the VASER group based on histologic evaluation. Furthermore, VASER-derived ASCs presented better quality in terms of cell differentiation capacity. CONCLUSIONS: The in vivo study confirmed better graft angiogenesis with less inflammation, apoptosis, and scar formation in the VASER group. ASCs harvested with VASER exhibited increased differentiation capacity compared with those obtained by TSAL, and represent an excellent source for fat grafting and regenerative medicine.


Assuntos
Lipectomia , Adipócitos , Tecido Adiposo , Animais , Diferenciação Celular , Humanos , Lipectomia/efeitos adversos , Camundongos , Sucção
4.
Int J Mol Sci ; 19(4)2018 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-29565284

RESUMO

Skin is the largest human organ, our protection against various environmental assaults and noxious agents. Accumulation of these stress events may lead to the formation of skin cancers, including both melanoma and non-melanoma skin cancers. Although modern targeted therapies have ameliorated the management of cutaneous malignancies, a safer, more affordable, and more effective strategy for chemoprevention and treatment is clearly needed for the improvement of skin cancer care. Phytochemicals are biologically active compounds derived from plants and herbal products. These agents appear to be beneficial in the battle against cancer as they exert anti-carcinogenic effects and are widely available, highly tolerated, and cost-effective. Evidence has indicated that the anti-carcinogenic properties of phytochemicals are due to their anti-oxidative, anti-inflammatory, anti-proliferative, and anti-angiogenic effects. In this review, we discuss the preventive potential, therapeutic effects, bioavailability, and structure-activity relationship of these selected phytochemicals for the management of skin cancers. The knowledge compiled here will provide clues for future investigations on novel oncostatic phytochemicals and additional anti-skin cancer mechanisms.


Assuntos
Compostos Fitoquímicos/uso terapêutico , Neoplasias Cutâneas/tratamento farmacológico , Inibidores da Angiogênese/uso terapêutico , Animais , Anti-Inflamatórios/uso terapêutico , Quimioprevenção , Humanos , Neoplasias Cutâneas/prevenção & controle
6.
Dev Biol ; 381(2): 482-90, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23850772

RESUMO

Signaling pathways are often re-used during development in surprisingly different ways. The Hippo tumor suppressor pathway is best understood for its role in the control of growth. The pathway is also used in a very different context, in the Drosophila eye for the robust specification of R8 photoreceptor neuron subtypes, which complete their terminal differentiation by expressing light-sensing Rhodopsin (Rh) proteins. A double negative feedback loop between the Warts kinase of the Hippo pathway and the PH-domain growth regulator Melted regulates the choice between 'pale' R8 (pR8) fate defined by Rh5 expression and 'yellow' R8 (yR8) fate characterized by Rh6 expression. Here, we show that the gene encoding the homolog of human Nuclear respiratory factor 1, erect wing (ewg), is autonomously required to inhibit warts expression and to promote melted expression to specify pR8 subtype fate and induce Rh5. ewg mutants express Rh6 in most R8s due to ectopic warts expression. Further, ewg is continuously required to maintain repression of Rh6 in pR8s in aging flies. Our work shows that Ewg is a critical factor for the stable down-regulation of Hippo pathway activity to determine neuronal subtype fates. Neural-enriched factors, such as Ewg, may generally contribute to the contextual re-use of signaling pathways in post-mitotic neurons.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Neuropeptídeos/metabolismo , Células Fotorreceptoras de Invertebrados/metabolismo , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular , Drosophila/citologia , Proteínas de Drosophila/genética , Retroalimentação Fisiológica , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Neuropeptídeos/genética , Especificidade de Órgãos , Células Fotorreceptoras de Invertebrados/citologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Retina/citologia , Retina/metabolismo , Rodopsina/genética , Rodopsina/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética
7.
J Mater Chem B ; 12(26): 6394-6409, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38855886

RESUMO

This study develops a composite bone graft of CaO-MgO-SiO2 glass-ceramic and CaSO4 [abbreviated as (CMS)3-x(CS)x] via the sponge replication technique with weight fractions of x = 0, 1, 1.5, 2, and 3. The (CMS)1.5(CS)1.5 composite displays a superior degradability and, a suitable compressive strength of ∼3 MPa, and excellent cell proliferation and differentiation. The in vivo rat femur test in the hybrid-pore (CMS)1.5(CS)1.5 composite granules achieves a higher rate of bone formation, which is ∼2.7 times better than that of the commercial HAP/ß-TCP at 12 weeks. Improved expressions of osteocyte and mature osteocyte marker genes, namely (Spp1, Dmp1, and Fgf23), were observed in the (CMS)1.5(CS)1.5 group, indicating a faster differentiation into mature bone tissue. The ions release of (CMS)1.5(CS)1.5 through the ERK1/2 signaling pathway promotes osteogenic differentiation. The high bone generation rate can be attributed to faster active ions release and modified surface topography. This work highlights an excellent bone graft candidate for clinical applications in orthopedic surgery.


Assuntos
Cerâmica , Osteogênese , Cerâmica/química , Animais , Osteogênese/efeitos dos fármacos , Ratos , Diferenciação Celular/efeitos dos fármacos , Compostos de Cálcio/química , Ratos Sprague-Dawley , Proliferação de Células/efeitos dos fármacos , Óxidos/química , Dióxido de Silício/química , Masculino , Substitutos Ósseos/química , Substitutos Ósseos/farmacologia , Transplante Ósseo/métodos , Óxido de Magnésio/química , Propriedades de Superfície , Fêmur
8.
Sci Technol Adv Mater ; 14(5): 054403, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27877607

RESUMO

The clinical demand for cartilage tissue engineering is potentially large for reconstruction defects resulting from congenital deformities or degenerative disease due to limited donor sites for autologous tissue and donor site morbidities. Cartilage tissue engineering has been successfully applied to the medical field: a scaffold pre-cultured with chondrocytes was used prior to implantation in an animal model. We have developed a surgical approach in which tissues are engineered by implantation with a vascular pedicle as an in vivo bioreactor in bone and adipose tissue engineering. Collagen type II, chitosan, poly(lactic-co-glycolic acid) (PLGA) and polycaprolactone (PCL) were four commonly applied scaffolds in cartilage tissue engineering. To expand the application of the same animal model in cartilage tissue engineering, these four scaffolds were selected and compared for their ability to generate cartilage with chondrocytes in the same model with an in vivo bioreactor. Gene expression and immunohistochemistry staining methods were used to evaluate the chondrogenesis and osteogenesis of specimens. The result showed that the PLGA and PCL scaffolds exhibited better chondrogenesis than chitosan and type II collagen in the in vivo bioreactor. Among these four scaffolds, the PCL scaffold presented the most significant result of chondrogenesis embedded around the vascular pedicle in the long-term culture incubation phase.

9.
Plast Reconstr Surg ; 151(5): 1005-1015, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36534068

RESUMO

BACKGROUND: The pathophysiology of adipose proliferation or differentiation in extremity lymphedema has not been thoroughly studied. This study investigated the impacts of the lymph harvested from lymphedematous limbs on the adipogenesis of adipose-derived stem cells (ASCs). METHODS: ASCs were isolated from the adipose tissue of normal extremities and cultured with lymph collected from Cheng lymphedema grade III to IV patients or adipogenic differentiation medium (ADM) and further subjected to differentiation and proliferation assay. The expression of adipogenesis genes was examined by real-time polymerase chain reaction to investigate the effect of lymph on ASCs. The level of adipogenic cytokines in the lymph was also evaluated. RESULTS: The adipocytes were significantly larger in lymphedema fat tissue compared with that in normal fat tissues ( P < 0.00). The adipogenesis of ASCs cultured in lymph was significantly enhanced compared with in ADM ( P = 0.008) on day 10, suggesting that the adipogenesis of ASCs was promoted under the lymph-cultured environment. The expression of adipogenesis genes, peroxisome proliferator-activated receptor ( P = 0.02), CAAT/enhancer-binding protein α ( P = 0.008); fatty-acid binding protein ( P = 0.004), and lipoprotein lipase ( P = 0.003), was statistically elevated when the ASCs were cultured with lymph. The insulin content in lymph was statistically higher in lymph ( P < 0.001) than in plasma. CONCLUSIONS: The adipogenesis of ASCs was promoted under the lymph-cultured environment with statistically increased adipogenesis genes of peroxisome proliferator-activated receptor, CAAT/enhancer-binding protein α, fatty-acid binding protein, and lipoprotein lipase. The excess lymph accumulated in the lymphedematous extremity contained a greater insulin/insulin-like growth factor-2. These adipogenic factors promoted the expression of early adipogenesis genes and led ASCs to undergo adipogenesis and differentiated into adipocytes. CLINICAL RELEVANCE STATEMENT: The accumulation of adipose tissue in the lymphedema region was contributed from the content of excess lymph.


Assuntos
Insulinas , Linfedema , Humanos , Adipogenia/fisiologia , Lipase Lipoproteica/metabolismo , Lipase Lipoproteica/farmacologia , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/farmacologia , Adipócitos/fisiologia , Tecido Adiposo , Diferenciação Celular/genética , Células-Tronco/fisiologia , Insulinas/metabolismo , Insulinas/farmacologia , Células Cultivadas
10.
J Pers Med ; 13(4)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37109086

RESUMO

Understanding the regulatory mechanisms underlying corneal epithelial cell (CEC) proliferation in vitro may provide the means to boost CEC production in cell therapy for ocular disorders. The transcription factor ΔNp63 plays a crucial role in the proliferation of CECs, but the underlying mechanisms is yet to be elucidated. TP63 and ΔNp63 are encoded by the TP63 gene via alternative promoters. We previously reported that both ΔNp63 and activating transcription factor (ATF3) are substantially expressed in cultured CECs, but the regulatory relationship between ΔNp63 and ATF3 is unknown. In the present study, we found that ΔNp63 increased ATF3 expression and ATF3 promoter activity in cultured CECs. The deletion of the p63 binding core site reduced ATF3 promoter activity. CECs overexpressing ATF3 exhibited significantly greater proliferation than control CECs. ATF3 knockdown suppressed the ΔNp63-induced increase in cell proliferation. Overexpression of ATF3 in CECs significantly elevated protein and mRNA levels of cyclin D. The protein levels of keratin 3/14, integrin ß1, and involucrin did not differ between ATF3-overexpressing CECs, ATF3-downregulated CECs, and control cells. In conclusion, our results suggest that ΔNp63 increases CEC proliferation via the ΔNp63/ATF3/CDK pathway.

11.
J Tissue Eng ; 14: 20417314231196212, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37661967

RESUMO

Current clinical treatments on lymphedema provide promising results, but also result in donor site morbidities. The establishment of a microenvironment optimized for lymphangiogenesis can be an alternative way to enhance lymphatic tissue formation. Hemodynamic flow stimuli have been confirmed to have an influential effect on angiogenesis in tissue engineering, but not on lymphatic vessel formation. Here, the three in vivo scaffolds generated from different blood stimuli in the subcutaneous layer, in the flow through pedicle, and in an arterio-venous (AV) loop model, were created to investigate potential of lymphangiogenesis of scaffolds containing lymphatic endothelial cells (LECs). Our results indicated that AV loop model displayed better lymphangiogenesis in comparison to the other two models with slower flow or no stimuli. Other than hemodynamic force, the supplement of LECs is required for lymphatic vessel regeneration. The in vivo scaffold generated from AV loop model provides an effective approach for engineering lymphatic tissue in the clinical treatment of lymphedema.

12.
Cells ; 12(16)2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37626921

RESUMO

MicroRNA (miRNA) 107 expression is downregulated but Wnt3a protein and ß-catenin are upregulated in degenerated intervertebral disc (IVD). We investigated mir-107/Wnt3a-ß-catenin signaling in vitro and in vivo following hyperbaric oxygen (HBO) intervention. Our results showed 96 miRNAs were upregulated and 66 downregulated in degenerated nucleus pulposus cells (NPCs) following HBO treatment. The 3' untranslated region (UTR) of the Wnt3a mRNA contained the "seed-matched-sequence" for miR-107. MiR-107 was upregulated and a marked suppression of Wnt3a was observed simultaneously in degenerated NPCs following HBO intervention. Knockdown of miR-107 upregulated Wnt3a expression in hyperoxic cells. HBO downregulated the protein expression of Wnt3a, phosphorylated LRP6, and cyclin D1. There was decreased TOP flash activity following HBO intervention, whereas the FOP flash activity was not affected. HBO decreased the nuclear translocation of ß-catenin and decreased the secretion of MMP-3 and -9 in degenerated NPCs. Moreover, rabbit serum KS levels and the stained area for Wnt3a and ß-catenin in repaired cartilage tended to be lower in the HBO group. We observed that HBO inhibits Wnt3a/ß-catenin signaling-related pathways by upregulating miR-107 expression in degenerated NPCs. HBO may play a protective role against IVD degeneration and could be used as a future therapeutic treatment.


Assuntos
Oxigenoterapia Hiperbárica , MicroRNAs , Núcleo Pulposo , Animais , Coelhos , beta Catenina , Oxigênio , Modelos Animais , Regiões 3' não Traduzidas , MicroRNAs/genética
13.
J Mater Chem B ; 11(33): 8007-8019, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37530140

RESUMO

Craniofacial/jawbone deformities remain a significant clinical challenge in restoring facial/dental functions and esthetics. Despite the reported therapeutics for clinical bone tissue regeneration, the bioavailability issue of autografts and limited regeneration efficacy of xenografts/synthetic bone substitutes, however, inspire continued efforts towards functional conjugation and improvement of bioactive bone graft materials. Regarding the potential of nitric oxide (NO) in tissue engineering, herein, functional conjugation of NO-delivery dinitrosyl iron complex (DNIC) and osteoconductive bone graft materials was performed to optimize the spatiotemporal control over the delivery of NO and to activate synergistic osteogenesis and angiogenesis in rat calvaria bone defects. Among three types of biomimetic DNICs, [Fe2(µ-SCH2CH2COOH)2(NO)4] (DNIC-COOH) features a steady kinetics for cellular uptake by MC3T3-E1 osteoblast cells followed by intracellular assembly of protein-bound DNICs and release of NO. This steady kinetics for intracellular delivery of NO by DNIC-COOH rationalizes its biocompatibility and wide-spectrum cell proliferation effects on MC3T3-E1 osteoblast cells and human umbilical vein endothelial cells (HUVECs). Moreover, the bridging [SCH2CH2COOH]- thiolate ligands in DNIC-COOH facilitate its chemisorption to deproteinized bovine bone mineral (DBBM) and physisorption onto TCP (ß-tricalcium phosphate), respectively, which provides a mechanism to control the kinetics for the local release of loaded DNIC-COOH. Using rats with calvaria bone defects as an in vivo model, DNIC-DBBM/DNIC-TCP promotes the osteogenic and angiogenic activity ascribed to functional conjugation of osteoconductive bone graft materials and NO-delivery DNIC-COOH. Of importance, the therapeutic efficacy of DNIC-DBBM/DNIC-TCP on enhanced compact bone formation after treatment for 4 and 12 weeks supports the potential for clinical application to regenerative medicine.


Assuntos
Óxido Nítrico , Osteogênese , Ratos , Humanos , Animais , Bovinos , Ferro/farmacologia , Células Endoteliais da Veia Umbilical Humana , Crânio
14.
Tissue Eng Part A ; 28(15-16): 685-699, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35137630

RESUMO

Tracheal reconstruction remains challenged in clinical. We aimed to fabricate scaffolded cartilage sheets with rigid and elastic supports for tracheal reconstruction. The chondrocyte cell infiltration activity was examined in poly-caprolactone sheet scaffolds with various thicknesses and pore sizes after seeding cells on the top surface of the sheet scaffolds. The expression of cartilage-related genes and accumulation of sulfated glycosaminoglycans were elevated in the cell-scaffold composites upon chondrogenic induction. The thicker cartilage sheets represented stronger mechanical properties than the thinner cartilage sheets. Two different cartilage sheets were orthotopically implanted into a trachea in a rabbit model for 2, 4, and 16 weeks. Cartilage-related sulfated glycosaminoglycans and type II collagen macromolecules were stably expressed in the tracheal implants. However, the invasive migration of fibrous tissue and profibrotic collagen fibers into cartilage implants and the peripheral space surrounding the implants were elevated in a time-dependent manner. At week 16 postimplantation, airway stenosis was noticed under the thicker sheet implants, but not the thinner implants, suggesting that the thinner (1 mm thick) scaffolded cartilage sheet was an optimal candidate for tracheal reconstruction in this study. Finally, cartilage sheets could be a reconstructive therapy candidate applied to reconstruct defects in the trachea and other tissues composed of cartilage. Impact statement Tissue engineering is a promising approach to generate biological substitutes. We aimed to develop cartilage sheets as tracheal prosthesis used in tracheal reconstruction or regional repairing in the animal model. The formation of microvessels and the dynamics of reepithelialization were monitored for 16 weeks in tracheal implants of the engineered cartilage sheets. In this study, it was demonstrated that the tissue-engineered cartilage sheets are potential substitutes applied in the reconstruction of the trachea and other tissues composed of cartilage tissue. The cartilage sheets were thought of as biomaterials for personalized regenerative medicine since the dimensions, thickness, and pore sizes of cartilage sheets were tunable to fit the lesions that need to be reconstructed.


Assuntos
Cartilagem , Alicerces Teciduais , Animais , Cartilagem/metabolismo , Condrócitos , Glicosaminoglicanos/metabolismo , Modelos Animais , Coelhos , Engenharia Tecidual/métodos , Traqueia
15.
J Clin Med ; 12(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36614907

RESUMO

Closed-incision negative-pressure wound therapy (iNPWT) is known to enhance wound healing and tissue regeneration. The main aim of the present study is to investigate its effectiveness on enhancing wound healing under tension. An animal study was designed using a swine model by removing a skin flap to create a wound that could be closed primarily under tension, and iNPWT was applied. The enhancement of angiogenesis, lymphangiogenesis, collagen deposition, and tissue proliferation with reduced inflammation by iNPWT was confirmed by histology. The effect of iNPWT was further verified in patients receiving a profunda artery perforator (PAP) free flap for breast reconstruction. iNPWT was applied on the transversely designed donor site in continuous mode for 7 days, in which the wound was always closed under tension. A significant improvement in off-bed time was noted with the application of iNPWT (4.6 ± 1.1st and 5.5 ± 0.8th postoperative days in the iNPWT and control groups, respectively, p = 0.028). The control group (without iNPWT treatment) presented more cases of poor wound healing in the acute (23.1% vs. 0%) and wound breakdown in the late (23.1% vs. 8.3%) stages. The treatment of closed incisions under tension with iNPWT clinically enhances wound healing and tissue regeneration and with histological evidence.

16.
Bioeng Transl Med ; 7(3): e10301, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36176614

RESUMO

Vascularized lymph node transplantation (VLNT) has shown inspiring results for the treatment of lymphedema. Nevertheless, it remains unclear how VLNT restores lymphatic drainage and whether or not immunity recovers after surgery. Hindlimb lymphedema model was created using rats with extensive groin and popliteal lymph node removable following with radiotherapy, and the lymphedema was confirmed using indocyanine green (ICG) lymphangiography and micro-computer tomography for volume measurement. VLNT was performed 1 month later. Volume measurement, ICG lymphangiography, histology, and immune reaction were done 1 month after surgery. VLNT successfully reduced the volume of the lymphedema hindlimb, restored lymphatic drainage function with proven lymphatic channel, and reduced lymphedema-related inflammation and fibrosis. It promotes lymphangiogenesis shown from ICG lymphangiography, histology, and enhanced lymphangiogenesis gene expression. Dendritic cell trafficking via the regenerated lymphatic channels was successfully restored, and maintained systemic immune response was proved using dinitrofluorobenzene sensitization and challenge. VLNT effectively reduces lymphedema and promotes lymphatic regeneration in the capillary lymphatic but not the collecting lymphatic vessels. Along with the re-established lymphatic system was the restoration of immune function locally and systemically. This correlated to clinical experience regarding the reduction of swelling and infection episodes after VLNT in lymphedema patients.

17.
J Biomater Appl ; 37(1): 118-131, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35412872

RESUMO

The engineering of tracheal substitutes is pivotal in improving tracheal reconstruction. In this study, we aimed to investigate the effects of biomechanical stimulation on tissue engineering tracheal cartilage by mimicking the trachea motion through a novel radial stretching bioreactor, which enables to dynamically change the diameter of the hollow cylindrical implants. Applying our bioreactor, we demonstrated that chondrocytes seeded on the surface of Poly (ε-caprolactone) scaffold respond to mechanical stimulation by improvement of infiltration into implants and upregulation of cartilage-specific genes. Further, the mechanical stimulation enhanced the accumulation of cartilage neo-tissues and cartilage-specific extracellular macromolecules in the muscle flap-remodeled implants and reconstructed trachea. Nevertheless, the invasion of fibrous tissues in the reconstructed trachea was suppressed upon mechanical loading.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Reatores Biológicos , Células Cultivadas , Condrócitos
18.
J Periodontol ; 93(10): 1553-1565, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34837709

RESUMO

BACKGROUND: Alveolar bone and cementum share many biological and developmental similarities. The mineralizing effect of calcitriol has been previously reported. Yet, its cemento-inductivity has not been confirmed. This study evaluated the potential cemento-inductivity effect of calcitriol and enamel matrix derivative (EMD) on human periodontal ligament-derived cells (hPDLCs). METHODS: The hPDLCs obtained from extracted third molars or premolars were cultured with calcitriol, or EMD. Cementogenic gene expression was examined using real-time quantitative reverse transcription polymerase chain reaction. Expression analysis also included cementoblast-specific markers, cementum protein 1 (CEMP1), cementum attachment protein (CAP), and recently reported cementoblast-enriched genes, secreted frizzled related protein 1 (SFRP1), and Dickkopf-related protein 1 (DKK1). Mineralization capacities were evaluated by alkaline phosphatase (ALP) activity, Alizarin Red, and Von Kossa staining followed by scanning electron microscope imaging and element mapping. RESULTS: Among tested conditions, 10 nM calcitriol enhanced most cementogenic gene expression, transforming growth factor-ß1, bone morphogenetic proteins (BMP-2 and BMP-4), core-binding factor subunit alpha-1/Runt-related transcription factor 2, Type I collagen, ALP, bone sialoprotein, osteopontin), osteocalcin, CEMP1, and CAP, and Wnt signaling negative modulators, SFRP1 and DKK1, along with highest ALP activity and mineralization formation in hPDLCs. However, only moderate CEMP1 protein was observed. In contrast, EMD stimulated stronger CEMP1 and CAP protein, but presented weaker mineralization capacity, hinting at the possibility that strong stimulation of mineralization might dominate cemetogenic specific factors and vice versa. CONCLUSIONS: Calcitriol demonstrated not only great osteoinductivity, but also the potential to induce cementogenic gene expression by initiating hPDLC differentiation and promoting mineralization. Compared with calcitriol, EMD promoted cemento-inductivity in hPDLCs at a later time point via highly expressed CEMP1 and CAP protein, but with less mineralization. Thus, calcitriol and EMD could provide differential enhancement of cemento-induction and mineralization, likely acting at various differentiation stages.


Assuntos
Calcitriol , Ligamento Periodontal , Humanos , Calcitriol/farmacologia , Células Cultivadas , Cemento Dentário , Cementogênese , Diferenciação Celular , Fosfatase Alcalina/metabolismo , Proliferação de Células , Proteínas/metabolismo , Proteínas/farmacologia
19.
World J Stem Cells ; 13(11): 1610-1624, 2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34909114

RESUMO

Dental stem cells can differentiate into different types of cells. Dental pulp stem cells, stem cells from human exfoliated deciduous teeth, periodontal ligament stem cells, stem cells from apical papilla, and dental follicle progenitor cells are five different types of dental stem cells that have been identified during different stages of tooth development. The availability of dental stem cells from discarded or removed teeth makes them promising candidates for tissue engineering. In recent years, three-dimensional (3D) tissue scaffolds have been used to reconstruct and restore different anatomical defects. With rapid advances in 3D tissue engineering, dental stem cells have been used in the regeneration of 3D engineered tissue. This review presents an overview of different types of dental stem cells used in 3D tissue regeneration, which are currently the most common type of stem cells used to treat human tissue conditions.

20.
Sci Rep ; 10(1): 8372, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32433520

RESUMO

The regeneration capacity of knee cartilage can be enhanced by applying periosteal grafts, but this effect varies depending on the different sources of the periosteal grafts applied for cartilage formation. Tibia periosteum can be used to enhance cartilage repair. However, long-term analysis has not been conducted. The endochondral ossification capacity of tibia periosteum during cartilage repair also needs to be investigated. In this study, both vascularized and non-vascularized tibia periosteum grafts were studied to understand the relationship between tissue perfusion of the periosteum graft and the effects on cartilage regeneration and bone formation. Furthermore, anti-ossification reagents were added to evaluate the efficacy of the prevention of bone formation along with cartilage regeneration. A critical-size cartilage defect (4 × 4 mm) was created and was covered with an autologous tibia vascularized periosteal flap or with a non-vascularized tibia periosteum patch on the knee in the rabbit model. A portion of the vascularized periosteum group was also treated with the anti-osteogenic reagents Fulvestrant and IL1ß to inhibit unwanted bone formation. Our results indicated that the vascularized periosteum significantly enhanced cartilage regeneration in the cartilage defect region in long-term treatment compared to the non-vascularized group. Furthermore, the addition of anti-osteogenic reagents to the vascularized periosteum group suppressed bone formation but also reduced the cartilage regeneration rate. Our study using vascularized autologous tissue to repair cartilage defects of the knee may lead to the modification of current treatment in regard to osteoarthritis knee repair.


Assuntos
Medicina Regenerativa/métodos , Engenharia Tecidual/métodos , Animais , Osteogênese/fisiologia , Coelhos , Tíbia/cirurgia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa