Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Hum Mol Genet ; 31(24): 4228-4240, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-35904445

RESUMO

Polycystic kidney disease (PKD) is a ciliopathy characterized by fluid-filled epithelial cysts in the kidney. Although it is well established that the primary cilium is essential for hedgehog (HH) signaling and HH signaling is abnormally activated in multiple PKD models, the mechanism and function of HH activation in PKD pathogenesis remain incompletely understood. Here we used a transgenic HH reporter mouse line to identify the target tissue of HH signaling in Arl13f/f;Ksp-Cre mutant kidney, in which the cilia biogenesis gene Arl13b is specifically deleted in epithelial cells of the distal nephron. In addition, we used a co-culture system to dissect cross-talk between epithelial and mesenchymal cells in the absence of expanding cysts. Finally, we treated Arl13bf/f;Ksp-Cre mice with the GLI inhibitor GANT61 and analyzed its impact on PKD progression in this model. We found that deletion of Arl13b in epithelial cells in the mouse kidney, in vivo, led to non-cell-autonomous activation of the HH pathway in the interstitium. In vitro, when co-cultured with mesenchymal cells, Arl13b-/- epithelial cells produced more sonic hedgehog in comparison to cells expressing Arl13b. Reciprocally, HH signaling was activated in mesenchymal cells co-cultured with Arl13b-/- epithelial cells. Finally, whole body inhibition of the HH pathway by GANT61 reduced the number of proliferating cells, inhibited cyst progression and fibrosis and preserved kidney function in Arl13bf/f;Ksp-Cre mice. Our results reveal non-cell-autonomous activation of HH signaling in the interstitium of the Arl13bf/f;Ksp-Cre kidney and suggest that abnormal activation of the HH pathway contributes to disease progression.


Assuntos
Ciliopatias , Cistos , Doenças Renais Císticas , Camundongos , Animais , Proteínas Hedgehog/metabolismo , Doenças Renais Císticas/genética , Modelos Animais de Doenças , Camundongos Transgênicos , Ciliopatias/genética , Progressão da Doença
2.
EMBO J ; 39(16): e103614, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32677148

RESUMO

MIWI, a murine member of PIWI proteins mostly expressed during male meiosis, is crucial for piRNA biogenesis, post-transcriptional regulation, and spermiogenesis. However, its meiotic function remains unknown. Here, we report that MIWI deficiency alters meiotic kinetochore assembly, significantly increases chromosome misalignment at the meiosis metaphase I plate, and causes chromosome mis-segregation. Consequently, Miwi-deficient mice show elevated aneuploidy in metaphase II and spermatid death. Furthermore, in Miwi-null and Miwi slicer-deficient mutants, major and minor satellite RNAs from centromeric and pericentromeric satellite repeats accumulate in excess. Over-expression of satellite repeats in wild-type spermatocytes also causes elevated chromosome misalignment, whereas reduction of both strands of major or minor satellite RNAs results in lower frequencies of chromosome misalignment. We show that MIWI, guided by piRNA, cleaves major satellite RNAs, generating RNA fragments that may form substrates for subsequent Dicer cleavage. Furthermore, Dicer cleaves all satellite RNAs in conjunction with MIWI. These findings reveal a novel mechanism in which MIWI- and Dicer-mediated cleavage of the satellite RNAs prevents the over-expression of satellite RNAs, thus ensuring proper kinetochore assembly and faithful chromosome segregation during meiosis.


Assuntos
Aneuploidia , Proteínas Argonautas/metabolismo , Segregação de Cromossomos , Cromossomos de Mamíferos/metabolismo , Meiose , Estabilidade de RNA , RNA Satélite/metabolismo , Animais , Proteínas Argonautas/genética , Cromossomos de Mamíferos/genética , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Cinetocoros/metabolismo , Camundongos , Camundongos Transgênicos , RNA Satélite/genética , Ribonuclease III/genética , Ribonuclease III/metabolismo
3.
Small ; 20(2): e2305317, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37670223

RESUMO

Stimuli-responsive ion nanochannels have attracted considerable attention in various fields because of their remote controllability of ionic transportation. For photoresponsive ion nanochannels, however, achieving precise regulation of ion conductivity is still challenging, primarily due to the difficulty of programmable structural changes in confined environments. Moreover, the relationship between noncontact photo-stimulation in nanoscale and light-induced ion conductivity has not been well understood. In this work, a versatile design for fabricating guard cell-inspired photoswitchable ion channels is presented by infiltrating azobenzene-cross-linked polymer (AAZO-PDAC) into nanoporous anodic aluminum oxide (AAO) membranes. The azobenzene-cross-linked polymer is formed by azobenzene chromophore (AAZO)-cross-linked poly(diallyldimethylammonium chloride) (PDAC) with electrostatic interactions. Under UV irradiation, the trans-AAZO isomerizes to the cis-AAZO, causing the volume compression of the polymer network, whereas, in darkness, the cis-AAZO reverts to the trans-AAZO, leading to the recovery of the structure. Consequently, the resultant nanopore sizes can be manipulated by the photomechanical effect of the AAZO-PDAC polymers. By adding ionic liquids, the ion conductivity of the light-driven ion nanochannels can be controlled with good repeatability and fast responses (within seconds) in multiple cycles. The ion channels have promising potential in the applications of biomimetic materials, sensors, and biomedical sciences.

4.
J Neurosci ; 42(17): 3537-3545, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35332081

RESUMO

Deactivation of G-protein-coupled receptors (GPCRs) involves multiple phosphorylations followed by arrestin binding, which uncouples the GPCR from G-protein activation. Some GPCRs, such as rhodopsin, are reused many times. Arrestin dissociation and GPCR dephosphorylation are key steps in the recycling process. In vitro evidence suggests that visual arrestin (ARR1) binding to light-activated, phosphorylated rhodopsin hinders dephosphorylation. Whether ARR1 binding also affects rhodopsin dephosphorylation in vivo is not known. We investigated this using both male and female mice lacking ARR1. Mice were exposed to bright light and placed in darkness for different periods of time, and differently phosphorylated species of rhodopsin were assayed by isoelectric focusing. For WT mice, rhodopsin dephosphorylation was nearly complete by 1 h in darkness. Surprisingly, we observed that, in the Arr1 KO rods, rhodopsin remained phosphorylated even after 3 h. Delayed dephosphorylation in Arr1 KO rods cannot be explained by cell stress induced by persistent signaling, since it is not prevented by the removal of transducin, the visual G-protein, nor can it be explained by downregulation of protein phosphatase 2A, the putative rhodopsin phosphatase. We further show that cone arrestin (ARR4), which binds light-activated, phosphorylated rhodopsin poorly, had little effect in enhancing rhodopsin dephosphorylation, whereas mice expressing binding-competent mutant ARR1-3A showed a similar time course of rhodopsin dephosphorylation as WT. Together, these results reveal a novel role of ARR1 in facilitating rhodopsin dephosphorylation in vivoSIGNIFICANCE STATEMENT G-protein-coupled receptors (GPCRs) are transmembrane proteins used by cells to receive and respond to a broad range of extracellular signals that include neurotransmitters, hormones, odorants, and light (photons). GPCR signaling is terminated by two sequential steps: phosphorylation and arrestin binding. Both steps must be reversed when GPCRs are recycled and reused. Dephosphorylation, which is required for recycling, is an understudied process. Using rhodopsin as a prototypical GPCR, we discovered that arrestin facilitated rhodopsin dephosphorylation in living mice.


Assuntos
Arrestina , Rodopsina , Animais , Arrestina/metabolismo , Feminino , Proteínas de Ligação ao GTP , Masculino , Camundongos , Fosforilação , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Rodopsina/genética , Rodopsina/metabolismo
5.
Macromol Rapid Commun ; 44(2): e2200547, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36208074

RESUMO

Untethered small actuators have drawn tremendous interest owing to their reversibility, flexibility, and widespread applications in various fields. For polymer actuators, however, it is still challenging to achieve programmable structural changes under different stimuli caused by the intractability and single-stimulus responses of most polymer materials. Herein, multi-stimuli-responsive polymer actuators that can respond to light and solvent via structural changes are developed. The actuators are based on bilayer films of polydimethylsiloxane (PDMS) and azobenzene chromophore (AAZO)-crosslinked poly(diallyldimethylammonium chloride) (PDAC). Upon UV light irradiation, the AAZO undergoes trans-cis-trans photoisomerization, causing the bending of the bilayer films. When the UV light is off, a shape recovery toward an opposite direction occurs spontaneously. The reversible deformation can be repeated at least 20 cycles. Upon solvent vapor annealing, one of the bilayer films can be selectively swollen, causing the bending of the bilayer films with the directions controlled by the solvent vapors. The effects of different parameters, such as the weight ratios of AAZO and film thicknesses, on the bending angles and curvatures of the polymer films are also analyzed. The results demonstrate that multi-stimuli-responsive actuators with fast responses and high reproducibility can be fulfilled.


Assuntos
Polímeros , Polímeros Responsivos a Estímulos , Polímeros/química , Solventes , Reprodutibilidade dos Testes , Raios Ultravioleta
6.
Int J Mol Sci ; 23(9)2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35563678

RESUMO

Medulloblastoma (MB) is the most common malignant brain tumor in children. It is classified into core molecular subgroups (wingless activated (WNT), sonic hedgehog activated (SHH), Group 3 (G3), and Group 4 (G4)). In this study, we analyzed the tumor-infiltrating immune cells and cytokine profiles of 70 MB patients in Taiwan using transcriptome data. In parallel, immune cell composition in tumors from the SickKids cohort dataset was also analyzed to confirm the findings. The clinical cohort data showed the WNT and G4 MB patients had lower recurrence rates and better 5-year relapse-free survival (RFP) compared with the SHH and G3 MB patients, among the four subgroups of MB. We found tumor-infiltrating B cells (TIL-Bs) enriched in the G4 subgroups in the Taiwanese MB patients and the SickKids cohort dataset. In the G4 subgroups, the patients with a high level of TIL-Bs had better 5-year overall survival. Mast cells presented in G4 MB tumors were positively correlated with TIL-Bs. Higher levels of CXCL13, IL-36γ, and CCL27 were found compared to other subgroups or normal brains. These three cytokines, B cells and mast cells contributed to the unique immune microenvironment in G4 MB tumors. Therefore, B-cell enrichment is a G4-subgroup-specific immune signature and the presence of B cells may be an indicator of a better prognosis in G4 MB patients.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/patologia , Criança , Proteínas Hedgehog/genética , Humanos , Meduloblastoma/genética , Meduloblastoma/patologia , Recidiva Local de Neoplasia , Transcriptoma , Microambiente Tumoral/genética
7.
J Cell Physiol ; 236(6): 4420-4434, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33184874

RESUMO

Gemcitabine has been a commonly used therapeutic agent for treatment of pancreatic cancer. In the clinic, a growing resistance to gemcitabine has been observed in patients with pancreatic cancer, and investigation of the underlying mechanism of gemcitabine resistance is urgently required. The microRNA (miRNA)-producing enzyme, Dicer, is crucial for the maturation of miRNAs, and is involved in clinical aggressiveness, poor prognosis, and survival outcomes in various cancers, however, the role of Dicer in acquired gemcitabine resistance of pancreatic cancer is still not clear. Here, we found that Dicer expression was significantly increased in gemcitabine-resistant PANC-1 (PANC-1/GEM) cells compared with parental PANC-1 cells and observed a high level of Dicer correlated with increased risk of pancreatic cancer. Suppression of Dicer obviously decreased gemcitabine resistance in PANC-1/GEM cells; consistently, overexpression of Dicer in PANC-1 cells increased gemcitabine resistance. Moreover, we identified that transcriptional factor Sp1 targeted the promoter region of Dicer and found ERK/Sp1 signaling regulated Dicer expression in PANC-1/GEM cells, as well as positively correlated with pancreatic cancer progression and suggest that targeting the ERK/Sp1/Dicer pathway has potential therapeutic value for pancreatic cancer with acquired resistance to gemcitabine.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Carcinoma Ductal Pancreático/tratamento farmacológico , RNA Helicases DEAD-box/metabolismo , Desoxicitidina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Ribonuclease III/metabolismo , Ativação Transcricional , Animais , Carcinoma Ductal Pancreático/enzimologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , RNA Helicases DEAD-box/genética , Desoxicitidina/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias Pancreáticas/enzimologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Ribonuclease III/genética , Transdução de Sinais , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp1/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
8.
Int J Mol Sci ; 22(20)2021 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-34681842

RESUMO

Treating brain tumors presents enormous challenges, and there are still poor prognoses in both adults and children. Application of novel targets and potential drugs is hindered by the function of the blood-brain barrier, which significantly restricts therapeutic access to the tumor. Mesenchymal stem cells (MSCs) can cross biological barriers, migrate to sites of injuries to exert many healing effects, and be engineered to incorporate different types of cargo, making them an ideal vehicle to transport anti-tumor agents to the central nervous system. Extracellular vesicles (EVs) produced by MSCs (MSC-EVs) have valuable innate properties from parent cells, and are being exploited as cell-free treatments for many neurological diseases. Compared to using MSCs, targeted delivery via MSC-EVs has a better pharmacokinetic profile, yet avoids many critical issues of cell-based systems. As the field of MSC therapeutic applications is quickly expanding, this article aims to give an overall picture for one direction of EV-based targeting of brain tumors, with updates on available techniques, outcomes of experimental models, and critical challenges of this concept.


Assuntos
Barreira Hematoencefálica , Neoplasias Encefálicas/terapia , Encéfalo , Vesículas Extracelulares , Técnicas de Transferência de Genes , Células-Tronco Mesenquimais , Humanos , Terapia de Alvo Molecular
9.
Nucleic Acids Res ; 46(3): 1295-1307, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29325078

RESUMO

DNA recombination is required for effective segregation and diversification of genomes and for the successful completion of meiosis. Recent studies in various species hybrids have demonstrated a genetic link between DNA recombination and speciation. Consistent with this, we observed a striking suppression of recombination in the hybrids between two nematodes, the hermaphroditic Caenorhabditis briggsae and the gonochoristic C. nigoni. To unravel the molecular basis underlying the recombination suppression in their hybrids, we generated a C. nigoni genome with chromosome-level contiguity and produced an improved C. briggsae genome with resolved gaps up to 2.8 Mb. The genome alignment reveals not only high sequence divergences but also pervasive intra- and inter-chromosomal sequence re-arrangements between the two species, which are plausible culprits for the observed suppression. Comparison of recombination boundary sequences suggests that recombination in the hybrid requires extensive sequence homology, which is rarely seen between the two genomes. The new genomes and genomic libraries form invaluable resources for studying genome evolution, hybrid incompatibilities and sex evolution for this pair of model species.


Assuntos
Caenorhabditis/genética , Quimera/genética , Genoma , Organismos Hermafroditas/genética , Recombinação Genética , Animais , Sequência de Bases , Evolução Biológica , Caenorhabditis/classificação , Mapeamento Cromossômico , Cruzamentos Genéticos , Feminino , Biblioteca Genômica , Masculino , Meiose , Alinhamento de Sequência
10.
Sci Technol Adv Mater ; 21(1): 471-481, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32939172

RESUMO

The development of novel magnetic nanoparticles (MNPs) with satisfactory biocompatibility for biomedical applications has been the subject of extensive exploration over the past two decades. In this work, we synthesized superparamagnetic iron oxide MNPs coated with polystyrene sulfonic acid (PSS-MNPs) and with a conventional co-precipitation method. The core size and hydrodynamic diameter of the PSS-MNPs were determined as 8-18 nm and 50-200 nm with a transmission electron microscopy and dynamic light scattering, respectively. The saturation magnetization of the particles was measured as 60 emu g-1 with a superconducting quantum-interference-device magnetometer. The PSS content in the PSS-MNPs was 17% of the entire PSS-MNPs according to thermogravimetric analysis. Fourier-transform infrared spectra were recorded to detect the presence of SO3 - groups, which confirmed a successful PSS coating. The structural properties of the PSS-MNPs, including the crystalline lattice, composition and phases, were characterized with an X-ray powder diffractometer and 3D nanometer-scale Raman microspectrometer. MTT assay and Prussian-blue staining showed that, although PSS-MNPs caused no cytotoxicity in both NIH-3T3 mouse fibroblasts and SK-HEP1 human liver-cancer cells up to 1000 µg mL-1, SK-HEP1 cells exhibited significantly greater uptake of PSS-MNPs than NIH-3T3 cells. The low cytotoxicity and high biocompatibility of PSS-MNPs in human cancer cells demonstrated in the present work might have prospective applications for drug delivery.

11.
Immunology ; 156(2): 199-212, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30418664

RESUMO

Dendritic cells (DCs) are professional antigen-presenting cells that play a key role in directing T-cell responses. Regulatory T (Treg) cells possess an immunosuppressive ability to inhibit effector T-cell responses, and Notch ligand Jagged1 (Jag1) is implicated in Treg cell differentiation. In this study, we evaluated whether bone marrow-derived DCs genetically engineered to express Jag1 (Jag1-DCs) would affect the maturation and function of DCs in vitro and further investigated the immunoregulatory ability of Jag1-DCs to manipulate T helper type 2 (Th2) -mediated allergic asthma in mice. We produced Jag1-DCs by adenoviral transduction. Overexpression of Jag1 by ovalbumin (OVA) -stimulated Jag1-DCs exhibited increased expression of programmed cell death ligand 1 (PD-L1) and OX40L molecules. Subsequently, co-culture of these OVA-pulsed Jag1-DCs with allogeneic or syngeneic CD4+ T cells promoted the generation of Foxp3+ Treg cells, and blocking PD-L1 using specific antibodies partially reduced Treg cell expansion. Furthermore, adoptive transfer of OVA-pulsed Jag1-DCs to mice with OVA-induced asthma reduced allergen-specific immunoglobulin E production, airway hyperresponsiveness, airway inflammation, and secretion of Th2-type cytokines (interleukin-4, interleukin-5, and interleukin-13). Notably, an increased number of Foxp3+ Treg cells associated with enhanced levels of transforming growth factor-ß production was observed in Jag1-DC-treated mice. These data indicate that transgenic expression of Jag1 by DCs promotes induction of Foxp3+ Treg cells, which ameliorated Th2-mediated allergic asthma in mice. Our study supports an attractive strategy to artificially generate immunoregulatory DCs and provides a novel approach for manipulating Th2 cell-driven deleterious immune diseases.


Assuntos
Adenoviridae , Asma/imunologia , Células Dendríticas/imunologia , Expressão Gênica , Proteína Jagged-1/imunologia , Linfócitos T Reguladores/imunologia , Células Th2/imunologia , Animais , Asma/genética , Asma/terapia , Citocinas/genética , Citocinas/imunologia , Células Dendríticas/patologia , Proteína Jagged-1/genética , Camundongos , Camundongos Endogâmicos BALB C , Linfócitos T Reguladores/patologia , Células Th2/patologia , Transdução Genética
12.
Genome Res ; 26(9): 1219-32, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27197225

RESUMO

Hybrid incompatibility (HI) prevents gene flow between species, thus lying at the heart of speciation genetics. One of the most common HIs is male sterility. Two superficially contradictory observations exist for hybrid male sterility. First, an introgression on the X Chromosome is more likely to produce male sterility than on autosome (so-called large-X theory); second, spermatogenesis genes are enriched on the autosomes but depleted on the X Chromosome (demasculinization of X Chromosome). Analysis of gene expression in Drosophila hybrids suggests a genetic interaction between the X Chromosome and autosomes that is essential for male fertility. However, the prevalence of such an interaction and its underlying mechanism remain largely unknown. Here we examine the interaction in nematode species by contrasting the expression of both coding genes and transposable elements (TEs) between hybrid sterile males and its parental nematode males. We use two lines of hybrid sterile males, each carrying an independent introgression fragment from Caenorhabditis briggsae X Chromosome in an otherwise Caenorhabditis nigoni background, which demonstrate similar defects in spermatogenesis. We observe a similar pattern of down-regulated genes that are specific for spermatogenesis between the two hybrids. Importantly, the down-regulated genes caused by the X Chromosome introgressions show a significant enrichment on the autosomes, supporting an epistatic interaction between the X Chromosome and autosomes. We investigate the underlying mechanism of the interaction by measuring small RNAs and find that a subset of 22G RNAs specifically targeting the down-regulated spermatogenesis genes is significantly up-regulated in hybrids, suggesting that perturbation of small RNA-mediated regulation may contribute to the X-autosome interaction.


Assuntos
Hibridização Genética , Infertilidade Masculina/genética , Espermatogênese/genética , Cromossomo X/genética , Animais , Caenorhabditis/genética , Regulação da Expressão Gênica no Desenvolvimento , Fluxo Gênico , Especiação Genética , Masculino , RNA/genética
13.
EMBO J ; 31(7): 1739-51, 2012 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-22333916

RESUMO

Skeletal myogenesis involves highly coordinated steps that integrate developmental cues at the chromatin of muscle progenitors. Here, we identify Myb-binding protein 1a (Mybbp1a) as a novel negative regulator of muscle-specific gene expression and myoblast differentiation. The mode of action of Mybbp1a was linked to promoter regulation as illustrated by its interaction with MyoD at the genomic regions of silent muscle-specific genes as well as its negative effect on MyoD-mediated transcriptional activity. We propose that Mybbp1a exerts its repressive role by inducing a less permissible chromatin structure following recruitment of negative epigenetic modifiers such as HDAC1/2 and Suv39h1. At the onset of differentiation, Mybbp1a undergoes a promoter disengagement that may be due to the differentiation-responsive, miR-546-mediated downregulation of Mybbp1a expression. Moreover, such alteration gave rise to promoter enrichment of activators and histone acetylation, an epigenetic status amenable to gene activation. Together, these findings unveil a hitherto unrecognized transcriptional co-repressor role of Mybbp1a in proliferating muscle progenitor cells, and highlight an epigenetic mechanism by which Mybbp1a and miR-546 interplay to control myoblast differentiation transition.


Assuntos
Proteínas de Transporte/metabolismo , Inativação Gênica , Desenvolvimento Muscular/genética , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas , Animais , Proteínas de Transporte/genética , Células Cultivadas , Proteínas de Ligação a DNA , Regulação para Baixo , Expressão Gênica , Humanos , Camundongos , MicroRNAs/metabolismo , Músculo Esquelético/metabolismo , Proteína MyoD/genética , Proteína MyoD/metabolismo , Proteínas Nucleares/genética , Proteínas de Ligação a RNA , Fatores de Transcrição
14.
Int J Urol ; 23(9): 734-44, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27397852

RESUMO

Distant organ metastasis of prostate cancer is a puzzle, and various theories have successively arisen to explain the mechanism of lethal cancer progression. While perhaps agreeable to many cancer biologists, the very statement of "seed and soil" proposed by Stephan Paget in 1881 is arguably still the major statement for organ-specific cancer metastasis. Since recent studies showed important correlations of regulation of cancer cells and the microenvironment, exosomes from cancer and stromal cells seem to create another important niche for metastasis. Stromal cells pretreated with exosomes from metastatic cancer cells increase the potential of change stromal cells. The poorly metastatic cancer cells could also enhance malignancy through transfer of proteins, microribonucleic acid and messenger ribonucleic acid to recipient cancer cells. Herein, we reviewed extracellular exosomes as a factor involved in cross-talk between stromal and prostate cancer epithelial cells.


Assuntos
Exossomos , Neoplasias da Próstata/patologia , Microambiente Tumoral , Progressão da Doença , Humanos , Masculino , Metástase Neoplásica
15.
Int J Mol Sci ; 16(12): 28943-78, 2015 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26690121

RESUMO

Hormone-refractory prostate cancer frequently relapses from therapy and inevitably progresses to a bone-metastatic status with no cure. Understanding of the molecular mechanisms conferring resistance to androgen deprivation therapy has the potential to lead to the discovery of novel therapeutic targets for type of prostate cancer with poor prognosis. Progression to castration-resistant prostate cancer (CRPC) is characterized by aberrant androgen receptor (AR) expression and persistent AR signaling activity. Alterations in metabolic activity regulated by oncogenic pathways, such as c-Myc, were found to promote prostate cancer growth during the development of CRPC. Non-coding RNAs represent a diverse family of regulatory transcripts that drive tumorigenesis of prostate cancer and various other cancers by their hyperactivity or diminished function. A number of studies have examined differentially expressed non-coding RNAs in each stage of prostate cancer. Herein, we highlight the emerging impacts of microRNAs and long non-coding RNAs linked to reactivation of the AR signaling axis and reprogramming of the cellular metabolism in prostate cancer. The translational implications of non-coding RNA research for developing new biomarkers and therapeutic strategies for CRPC are also discussed.


Assuntos
Próstata/metabolismo , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , RNA não Traduzido/metabolismo , Receptores Androgênicos/metabolismo , Transdução de Sinais , Animais , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Próstata/patologia , Neoplasias de Próstata Resistentes à Castração/patologia , RNA não Traduzido/genética , Receptores Androgênicos/genética
16.
Biochim Biophys Acta ; 1829(12): 1309-19, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24189493

RESUMO

EDD (E3 isolated by differential display) was initially isolated as a progestin-regulated gene in breast cancer cells, and represents the human ortholog of the Drosophila melanogaster hyperplastic discs gene (hyd). It encodes a highly conserved and predominantly nuclear ubiquitin E3 ligase of the HECT family, with potential multifunctional roles in development and tumorigenesis. In this study, we further examined the largely uncharacterized role of EDD in transcriptional regulation by uncovering the spectrum of its direct target genes at a genome-wide level. Use of a systematic approach that integrates gene expression and chromatin binding profiling identified several candidate EDD-target genes, one of which is ACVRL1, a TGF-ß receptor with functional implications in blood vessel development. Further characterization revealed a negative regulation of ACVRL1 gene expression by EDD that is exerted at the promoter. Consistent with the aberrant upregulation of ACVRL1 and downstream Smad signaling, abrogation of EDD led to deregulated vessel development and endothelial cell motility. Collectively, these results extended the known cellular roles of EDD to critical functions in transcriptional regulation as well as angiogenesis, and may provide mechanistic explanations for EDD's tumorigenic and developmental roles.


Assuntos
Receptores de Activinas Tipo II/genética , Movimento Celular , Genômica , Regiões Promotoras Genéticas/genética , Ativação Transcricional , Ubiquitina-Proteína Ligases/metabolismo , Receptores de Activinas Tipo II/metabolismo , Western Blotting , Quimiotaxia , Imunoprecipitação da Cromatina , Técnica Indireta de Fluorescência para Anticorpo , Células HeLa , Humanos , Técnicas Imunoenzimáticas , Luciferases/metabolismo , Ligação Proteica , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção , Ubiquitina-Proteína Ligases/genética
17.
Bioorg Med Chem Lett ; 24(15): 3403-6, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24939758

RESUMO

A novel class of phenyl benzenesulfonylhydrazides has been identified as potent inhibitors of indoleamine 2,3-dioxygenase (IDO), and their structure-activity relationship was explored. Coupling reactions between various benzenesulfonyl chlorides and phenylhydrazides were utilized to synthesize the sulfonylhydrazides bearing various substituents. Compound 3i exhibited 61 nM of IC50 in enzymatic assay and 172 nM of EC50 in the HeLa cell. The computational study of 3i suggested that the major interactions between 3i and IDO protein are the coordination of sulfone and heme iron, the hydrogen bonding and hydrophobic interactions between 3i and IDO. This novel class of IDO inhibitor provides a new direction to discover effective anti-cancer agents.


Assuntos
Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Fenil-Hidrazinas/farmacologia , Sulfonamidas/farmacologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Ensaios de Triagem em Larga Escala , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Modelos Moleculares , Estrutura Molecular , Fenil-Hidrazinas/síntese química , Fenil-Hidrazinas/química , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/química
18.
J Exp Clin Cancer Res ; 43(1): 130, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689348

RESUMO

BACKGROUND: Medulloblastomas (MBs) are one of the most common malignant brain tumor types in children. MB prognosis, despite improvement in recent years, still depends on clinical and biological risk factors. Metastasis is the leading cause of MB-related deaths, which highlights an unmet need for risk stratification and targeted therapy to improve clinical outcomes. Among the four molecular subgroups, sonic-hedgehog (SHH)-MB harbors clinical and genetic heterogeneity with a subset of high-risk cases. Recently, long non-coding (lnc)RNAs were implied to contribute to cancer malignant progression, but their role in MB remains unclear. This study aimed to identify pro-malignant lncRNAs that have prognostic and therapeutic significance in SHH-MB. METHODS: The Daoy SHH-MB cell line was engineered for ectopic expression of MYCN, a genetic signature of SHH-MB. MYCN-associated lncRNA genes were identified using RNA-sequencing data and were validated in SHH-MB cell lines, MB tissue samples, and patient cohort datasets. SHH-MB cells with genetic manipulation of the candidate lncRNA were evaluated for metastatic phenotypes in vitro, including cell migration, invasion, sphere formation, and expressions of stemness markers. An orthotopic xenograft mouse model was used to evaluate metastasis occurrence and survival. Finally, bioinformatic screening and in vitro assays were performed to explore downstream mechanisms. RESULTS: Elevated lncRNA LOXL1-AS1 expression was identified in MYCN-expressing Daoy cells and MYCN-amplified SHH-MB tumors, and was significantly associated with lower survival in SHH-MB patients. Functionally, LOXL1-AS1 promoted SHH-MB cell migration and cancer stemness in vitro. In mice, MYCN-expressing Daoy cells exhibited a high metastatic rate and adverse effects on survival, both of which were suppressed under LOLX1-AS1 perturbation. Integrative bioinformatic analyses revealed associations of LOXL1-AS1 with processes of cancer stemness, cell differentiation, and the epithelial-mesenchymal transition. LOXL1-AS1 positively regulated the expression of transforming growth factor (TGF)-ß2. Knockdown of TGF-ß2 in SHH-MB cells significantly abrogated their LOXL1-AS1-mediated prometastatic functions. CONCLUSIONS: This study proved the functional significance of LOXL1-AS1 in SHH-MB metastasis by its promotion of TGF-ß2-mediated cancer stem-like phenotypes, providing both prognostic and therapeutic potentials for targeting SHH-MB metastasis.


Assuntos
Proteínas Hedgehog , Meduloblastoma , Células-Tronco Neoplásicas , Humanos , Meduloblastoma/genética , Meduloblastoma/patologia , Meduloblastoma/metabolismo , Animais , Camundongos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Metástase Neoplásica , Fenótipo , Feminino , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Linhagem Celular Tumoral , Masculino , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/patologia , Neoplasias Cerebelares/metabolismo , Prognóstico , Movimento Celular
19.
Nucleic Acids Res ; 39(10): 4048-62, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21266480

RESUMO

The centromere is a highly specialized chromosomal element that is essential for chromosome segregation during mitosis. Centromere integrity must therefore be properly preserved and is strictly dependent upon the establishment and maintenance of surrounding chromatin structure. Here we identify WDHD1, a WD40-domain and HMG-domain containing protein, as a key regulator of centromere function. We show that WDHD1 associates with centromeres in a cell cycle-dependent manner, coinciding with mid-to-late S phase. WDHD1 down-regulation compromises HP1α localization to pericentric heterochromatin and leads to altered expression of epigenetic markers associated with this chromatin region. As a consequence, such reduced epigenetic silencing is manifested in disrupted heterochromatic state of the centromere and a defective mitosis. Moreover, we demonstrate that a possible underlying mechanism of WDHD1's involvement lies in the proper generation of the small non-coding RNAs encoded by the centromeric satellite repeats. This role is mediated at the post-transcriptional level and likely through stabilizing Dicer association with centromeric RNA. Collectively, these findings suggest that WDHD1 may be a critical component of the RNA-dependent epigenetic control mechanism that sustains centromere integrity and genomic stability.


Assuntos
Centrômero/metabolismo , Proteínas de Ligação a DNA/fisiologia , Inativação Gênica , Animais , Ciclo Celular , Linhagem Celular , Centrômero/química , Homólogo 5 da Proteína Cromobox , Proteínas de Ligação a DNA/análise , Proteínas de Ligação a DNA/antagonistas & inibidores , Regulação para Baixo , Epigênese Genética , Heterocromatina/química , Humanos , Camundongos , Processamento Pós-Transcricional do RNA , Fase S , Transcrição Gênica
20.
Sci Rep ; 13(1): 15007, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37696847

RESUMO

A universal health insurance program such as the National Health Insurance in Taiwan offers a wide coverage and increased access to healthcare services. Despite its ongoing efforts to enhance healthcare accessibility, differences in health for people living in urban and resource-deprived areas remain substantial. To investigate the longitudinal impact of the healthcare system and other potential structural drivers such as education and economic development on geographical disparities in health, we designed a panel study with longitudinal open secondary data, covering all 368 townships in Taiwan between 2013 and 2017. Our findings indicated higher mortality rates in the mountainous and rural areas near the east and south regions of the island in both years. Multivariate analyses showed an increase in the density of primary care physicians (PCP) was associated with lower all-cause mortality (ß = - 0.72, p < 0.0001) and cardiovascular disease mortality (ß = - 0.41, p < 0.0001). Effect of PCP is evident, but merely focusing on access to healthcare is still not enough. Additional measures are warranted to address the health disparities existing between urban and underprivileged areas.


Assuntos
Doenças Cardiovasculares , Humanos , Taiwan/epidemiologia , Fatores Socioeconômicos , Escolaridade , Atenção à Saúde
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa