Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Eur Spine J ; 33(8): 3284-3290, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38937348

RESUMO

PURPOSE: To investigate efficacy of 3-month teriparatide(TPD) and compare this treatment with vertebroplasty in terms of clinical and radiographic outcomes after osteoporotic vertebral compression fractures (OVCFs). METHODS: This is a retrospective matched cohort study. Patients who received conservative treatment with at least 3-month TPD treatment for acute OVCF with at least 6 months follow-up were included. Each enrolled TPD case was matched with 2 vertebroplasty cases using age and gender. 30 TPD cases and 60 vertebroplasty cases were enrolled. Patient-reported pain scores were obtained at diagnosis and 1, 3, 6 months after diagnosis. Radiographic parameters including middle body height, posterior body height, wedge angle and kyphotic angle were measured at diagnosis and 6 months after diagnosis. Fracture non-union and subsequent vertebral fracture were evaluated. RESULTS: TPD treatment showed inferior pain relief to vertebroplasty group at 1 month, but did not show difference at 3 and 6 months after diagnosis. In TPD cases, progression of vertebral body collapse was noted in terms of middle body height and wedge angle at final follow up. Instead, both middle body height and wedge angle increased significantly after operation in the vertebroplasty group. Fracture non-union was confirmed via MRI and 4 TPD patients were diagnosed with non-union (4/30, 13.3%). Subsequent compression fracture within 6 months was significant higher in vertebroplasty group (12/60, 20%) than in TPD group (1/30, 3.3%). CONCLUSION: In acute OVCFs, 3-month TPD treatment alone showed comparable pain improvement and less subsequent spine fracture than vertebroplasty.


Assuntos
Fraturas por Compressão , Fraturas por Osteoporose , Fraturas da Coluna Vertebral , Teriparatida , Vertebroplastia , Humanos , Fraturas por Compressão/cirurgia , Fraturas por Compressão/diagnóstico por imagem , Vertebroplastia/métodos , Feminino , Fraturas da Coluna Vertebral/cirurgia , Fraturas da Coluna Vertebral/diagnóstico por imagem , Idoso , Masculino , Fraturas por Osteoporose/cirurgia , Fraturas por Osteoporose/diagnóstico por imagem , Estudos Retrospectivos , Teriparatida/uso terapêutico , Idoso de 80 Anos ou mais , Resultado do Tratamento , Conservadores da Densidade Óssea/uso terapêutico , Pessoa de Meia-Idade , Manejo da Dor/métodos
2.
Sci Technol Adv Mater ; 23(1): 1-16, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35023999

RESUMO

The complex process of wound healing depends on the coordinated interaction between various immunological and biological systems, which can be aided by technology. This present review provides a broad overview of the medical applications of piezoelectric and triboelectric nanogenerators, focusing on their role in the development of wound healing technology. Based on the finding that the damaged epithelial layer of the wound generates an endogenous bioelectric field to regulate the wound healing process, development of technological device for providing an exogenous electric field has therefore been paid attention. Authors of this review focus on the design and application of piezoelectric and triboelectric materials to manufacture self-powered nanogenerators, and conclude with an outlook on the current challenges and future potential in meeting medical needs and commercialization.

3.
BMC Musculoskelet Disord ; 20(1): 260, 2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31142310

RESUMO

BACKGROUND: The risk of posterior cage migration (PCM) exists when a fusion cage is used for transforaminal lumbar interbody fusion (TLIF). This complication is influenced by contact pressure between the endplate and the cage. Previous reports demonstrated that anteriorly located cages bore more load and had greater strain than posteriorly located cages. However, there have been no detailed reports on the correlation between cage positioning and PCM. METHODS: From March 2014 to October 2015, we reviewed 953 patients receiving open transforaminal lumbar interbody fusion (TLIF) and bilateral pedicle screw instrumentation. One hundred patients without PCM were randomly sampled as the control group. Postoperative sagittal and coronal cage positions in the disc space were evaluated with the 'depth ratio' and the 'coronal ratio'. The demographic data of patients with and without PCM were compared to detect patient-related factors. Radiographic and cage related parameters, including cage position, preoperative disc height, preoperative spine stability, cage geometry, cage size, and height variance (= cage height - preoperative disc height) were compared between the PCM group and the control group. Univariate analyses and a multivariate logistic model were used to identify risk factors of PCM. RESULTS: Posterior cage migration occurred in 24 (2.52%) of 953 patients. The univariate and multivariate analyses revealed that those with a decreased depth ratio (OR, 9.78E-4; 95% CI, 9.69E-4 - 9.87E-4; p < 0.001) and height variance (OR, 0.757, 95% CI, 0.575-0997, p = 0.048) had a significantly higher risk of developing PCM. CONCLUSIONS: Our results verified that posteriorly located cages and undersized cages are more prone to developing PCM, which may aid surgeons in making optimal decisions during TLIF procedures.


Assuntos
Migração de Corpo Estranho/epidemiologia , Fixadores Internos/efeitos adversos , Complicações Pós-Operatórias/epidemiologia , Doenças da Coluna Vertebral/cirurgia , Fusão Vertebral/efeitos adversos , Idoso , Estudos de Casos e Controles , Tomada de Decisão Clínica , Feminino , Seguimentos , Migração de Corpo Estranho/diagnóstico por imagem , Migração de Corpo Estranho/etiologia , Humanos , Disco Intervertebral/anatomia & histologia , Disco Intervertebral/diagnóstico por imagem , Disco Intervertebral/patologia , Vértebras Lombares/anatomia & histologia , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/patologia , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Complicações Pós-Operatórias/diagnóstico por imagem , Complicações Pós-Operatórias/etiologia , Prevalência , Estudos Retrospectivos , Fatores de Risco , Doenças da Coluna Vertebral/diagnóstico por imagem , Doenças da Coluna Vertebral/patologia , Fusão Vertebral/instrumentação , Fusão Vertebral/métodos
4.
BMC Musculoskelet Disord ; 18(1): 393, 2017 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-28893205

RESUMO

BACKGROUND: Burst fracture is a common thoracolumbar injury that is treated using posterior pedicle instrumentation and fusion combined with transpedicular intracorporeal grafting after reduction. In this study, we compared the outcome of these two techniques by using radiologic imaging and functional outcome. METHODS: Sixty-one patients with acute thoracolumbar burst fracture were operated with kyphoplasty (n = 31) or vertebroplasty (n = 30) and retrospectively reviewed in our institution between 2011 and 2014. All 61 patients underwent surgery within 5 days after admission to the hospital and then followed-up for 12 to 24 months after surgery. RESULTS: Significant improvement was found in the anterior vertebral height (92 ± 8.9% in the kyphoplasty group, 85.6 ± 7.2% in the vertebroplasty group, p < 0.01) at 1 month post-operatively and (89 ± 7.9% in the kyphoplasty group, 78 ± 6.9% in the vertebroplasty group, p < 0.01) at the 24-month follow-up. Significant improvement was also observed in the kyphotic angle (1.2 ± 0.5° in the kyphoplasty group, 10.5 ± 1.2° in the vertebroplasty group, p < 0.01) at 1 month post-operatively and (5.4 ± 1.2° in the kyphoplasty group, 11.5 ± 8.5° in the vertebroplasty group, p < 0.01) at the 24-month follow-up. Both operations led to significant improvement of the patients' pain and the Oswestry disability index (p < 0.01). Cement leakage was noted in 29% of patients after kyphoplasty and 77% of patients after vertebroplasty (p < 0.01). Only one implant failure (3.3%), which required further surgical intervention, was reported in the vertebroplasty group. CONCLUSIONS: Reduction with additional balloon at the fractured site is better than indirect reduction only by posterior instrumentation. The better reduction of kyphotic angle and the lower cement leakage rate in the kyphoplasty group indicate that additional balloon kyphoplasty is safe and effective for acute thoracolumbar burst fracture.


Assuntos
Cifoplastia/métodos , Vértebras Lombares/lesões , Vértebras Lombares/cirurgia , Fraturas da Coluna Vertebral/cirurgia , Vértebras Torácicas/lesões , Vértebras Torácicas/cirurgia , Adulto , Feminino , Seguimentos , Fixação de Fratura/métodos , Fixação de Fratura/normas , Humanos , Cifoplastia/normas , Vértebras Lombares/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Fraturas da Coluna Vertebral/diagnóstico por imagem , Vértebras Torácicas/diagnóstico por imagem , Resultado do Tratamento
5.
BMC Musculoskelet Disord ; 17: 3, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26728876

RESUMO

BACKGROUND: Although autogenous iliac bone graft (AIBG) remains the gold standard for spine fusion, harvesting morbidity has prompted the search for alternatives especially for multi-segment fusion. This study aimed to evaluate the efficacy of using demineralized bone matrix (DBM) as a substitute of AIBG for long instrumented posterolateral fusion (≧ three-level fusion). METHODS: A total of 47 consecutive patients underwent laminectomy decompression, and multi-level instrumented posterolateral fusions were reviewed. Group 1 comprised 26 patients having DBM with autologous laminectomy bone (ALB). Group 2 consisted of 21 patients having AIBG with ALB. The fusion success evaluation was based on findings using the 12-month anteroposterior and dynamic plain radiographs. RESULTS: Gender, age, and the number of fusion levels were similar for both groups. 21 of 26 (80.8%) patients in group 1 and 18 of 21 (85.7%) patients in group 2 were observed to achieve solid bony fusion. There was no statistical difference in the fusion success (p = 0.72). Blood loss was significantly more in group 2 (p = 0.02). The duration of the hospital stays and operative times being longer for group 2, but the difference was not significant. CONCLUSIONS: DBM combined with ALB and osteoconductive materials is as effective as an autologous iliac bone graft with respect to long multi-segment posterolateral fusion success. DBM can be used as an effective bone graft substitute and may decrease morbidities associated with iliac bone graft harvest.


Assuntos
Materiais Biocompatíveis , Técnica de Desmineralização Óssea/métodos , Matriz Óssea/transplante , Transplante Ósseo/métodos , Ílio/transplante , Fusão Vertebral/métodos , Idoso , Idoso de 80 Anos ou mais , Materiais Biocompatíveis/administração & dosagem , Matriz Óssea/diagnóstico por imagem , Feminino , Seguimentos , Humanos , Ílio/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Radiografia , Estudos Retrospectivos , Transplante Autólogo/métodos
6.
BMC Surg ; 15: 26, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25887274

RESUMO

BACKGROUND: Traditional approaches to deformity correction of degenerative lumbar scoliosis include anterior-posterior approaches and posterior-only approaches. Most patients are treated with posterior-only approaches because the high complication rate of anterior approach. Our purpose is to compare and assess outcomes of combined anterior lumbar interbody fusion and instrumented posterolateral fusion with posterior alone approach for degenerative lumbar scoliosis with spinal stenosis. METHODS: Between November 2002 and November 2011, a total of 110 patients with degenerative spinal deformity and curves measuring over 30° were included. Of the 110 patients who underwent surgery, 56 underwent the combined anterior and posterior approach and 54 underwent posterior surgery at our institution. The following were the indications of anterior lumbar interbody fusion: (1) rigid or frank lumbar kyphosis, (2) anterior or lateral bridged traction osteophytes, (3) gross coronal and sagittal deformity or imbalance, and (4) severe disc space narrowing that is not identifiable when performing posterior or transforaminal lumbar interbody fusion. The clinical outcomes were evaluated using the Oswestry disability index and the visual analog scale. The status of fusion were assessed according to the radiographic findings. RESULTS: All patients received clinical and radiographic follow-up for a minimum of 24 months, with an average follow-up of 53 months (range, 26-96 months). At the final follow-up, the mean ODI score improved from 28.8 to 6.4, and the mean back/leg VAS, from 8.2/5.5 to 2.1/0.9 in AP group and the mean ODI score improved from 29.1 to 6.2, and the mean back/leg VAS, from 9.0/6.5 to 2.3/0.5 in P group. The mean scoliotic angle changed from 41.3° preoperatively to 9.3°, and the lumbar lordotic angle, from 3.1° preoperatively to 35.7° in AP group and the mean scoliotic angle from 38.5 to 21.4 and the lumbar lordotic angle from 6 to 15.8 in P group. There were significant differences in sagittal (P = 0.009) and coronal (P = 0.02) plane correction between the two groups. CONCLUSIONS: Our results demonstrate that combined anterior lumbar interbody fusion and instrumented posterolateral fusion for adult degenerative lumbar scoliosis effectively improves sagittal and coronal plane alignment than posterior group and both group were effectively improves clinical scores.


Assuntos
Vértebras Lombares/cirurgia , Escoliose/cirurgia , Fusão Vertebral/métodos , Adulto , Idoso , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Fusão Vertebral/instrumentação , Resultado do Tratamento
7.
BMC Infect Dis ; 14: 220, 2014 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-24755138

RESUMO

BACKGROUND: Postoperative bacterial meningitis is a rare complication of spinal surgery and is considered to be a complication related to intraoperative incidental durotomy. A high index of suspicion for meningitis is essential in patients who have the clinical triad of fever, neck stiffness and consciousness disturbance during the postoperative period. A delay in diagnosis or treatment can lead to morbidity and mortality. Due to the low incidence of postoperative meningitis, very few studies have reported this complication. The purpose of this study was to report the clinical features, laboratory evaluations, treatment course and prognosis of 21 patients with post spinal surgery meningitis. METHODS: We retrospectively reviewed 21 patients (13 male, 8 female) with the diagnosis of postoperative meningitis after lumbar spinal surgery between January 2001 and Aug 2011. The median age of the patients was 67 years old (range 27 to 82 years) at the time of surgery. We recorded the preoperative diagnosis, operative methods, amount of drainage, clinical manifestations, laboratory evaluations, cerebrospinal fluid study, and infectious organisms. All patients diagnosed with postoperative meningitis received at least two weeks of antibiotic treatment. Clinical outcomes were assessed after at least two years of follow-up. RESULTS: From January 2001 to August 2011, 20,178 spinal operations were performed in our institution, and 21 patients (0.10%) were diagnosed with postoperative meningitis. Eighteen patients (85.7%) had fever, 19 (90.5%) had neck stiffness, and 16 (76.2%) had consciousness disturbance. All patients had at least two of the classic triad. In addition, 9 patients (42.9%) had headache, 3 (14.3%) had focal neurological deficits, and 2 (9.5%) had seizure attacks. There was no mortality in this series. Postoperative meningitis showed no adverse effect on the results of spinal surgery after follow-up for at least two years. CONCLUSIONS: Postoperative meningitis is a rare complication after spinal lumbar surgery. A high index of suspicion for meningitis should be maintained in patients with the clinical triad of fever, neck stiffness, and consciousness disturbance after spinal surgery. Intraoperative incidental durotomy is the most important predictor. An early diagnosis and appropriate antibiotic treatment can lead to a good outcome.


Assuntos
Vértebras Lombares/cirurgia , Meningites Bacterianas/epidemiologia , Complicações Pós-Operatórias/epidemiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Meningites Bacterianas/etiologia , Pessoa de Meia-Idade , Procedimentos Ortopédicos/efeitos adversos , Complicações Pós-Operatórias/etiologia , Estudos Retrospectivos , Taiwan/epidemiologia
8.
BMC Musculoskelet Disord ; 15: 443, 2014 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-25519761

RESUMO

BACKGROUND: Percutaneous pedicle screw instrumentation is a minimally invasive surgical technique; however, the effects of using percutaneous pedicle screw fixation in treating patients with spinal infections have not yet been well demonstrated. The aim of this study, therefore, was to determine whether percutaneous posterior pedicle screw instrumentation is superior to the traditional open approach in treating pyogenic spondylodiscitis. METHODS: We retrospectively reviewed data for 45 patients treated for pyogenic spondylodiscitis with anterior debridement and interbody fusion followed by a second-stage procedure involving either traditional open posterior pedicle screw fixation or percutaneous posterior pedicle screw fixation. Twenty patients underwent percutaneous fixation and 25 patients underwent open fixation. Demographic, operative, and perioperative data were collected and analyzed. RESULTS: The average operative time for the percutaneous procedure was 102.5 minutes, while the average time for the open procedure was 129 minutes. The average blood loss for the percutaneous patients was 89 ml versus a 344.8 ml average for the patients in the open group. Patients who underwent the minimally invasive surgery had lower visual analogue scale scores and required significantly less analgesia afterwards. After two years of follow-up, neither recurrent infection nor intraoperative complications, such as wound infection or screw loosening, were found in the percutaneous group. Moreover, there was no significant difference in outcome between the two groups in terms of Oswestry Disability Index scores. CONCLUSIONS: Anterior debridement and interbody fusion with bone grafting followed by minimally invasive percutaneous posterior instrumentation is an alternative treatment for pyogenic spondylodiscitis which can result in less intraoperative blood loss, shorter operative time, and reduced postoperative pain with no adverse effect on infection control.


Assuntos
Discite/diagnóstico por imagem , Discite/cirurgia , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/cirurgia , Parafusos Pediculares , Fusão Vertebral/métodos , Desbridamento/instrumentação , Desbridamento/métodos , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Procedimentos Cirúrgicos Minimamente Invasivos/instrumentação , Procedimentos Cirúrgicos Minimamente Invasivos/métodos , Radiografia , Estudos Retrospectivos , Fusão Vertebral/instrumentação , Fusão Vertebral/normas , Resultado do Tratamento
9.
BMC Surg ; 14: 3, 2014 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-24423182

RESUMO

BACKGROUND: Vertebral compression fractures (VCFs) constitute a major health care problem, not only because of their high incidence but also because of their direct and indirect negative impacts on both patients' health-related quality of life and costs to the health care system. Two minimally invasive surgical approaches were developed for the management of symptomatic VCFs: balloon kyphoplasty and vertebroplasty. The purpose of this study was to evaluate the effectiveness and safety of balloon kyphoplasty in the treatment of symptomatic VCFs. METHODS: Between July 2011 and June 2012, one hundred and eighty-seven patients with two hundred and fifty-one vertebras received balloon kyphoplasty in our hospital. There were sixty-five male and one hundred and twenty-two female patients with an average age of 74.5 (range, 61 to 95 years). The pain symptoms and quality of life, were measured before operation and at one day, three months, six months and one year following kyphoplasty. Radiographic data including restoration of kyphotic angle, anterior vertebral height, and any leakage of cement were defined. RESULTS: The mean visual analog pain scale decreased from a preoperative value of 7.7 to 2.2 at one day (p < .05) following operation and the Oswestry Disability Index improved from 56.8 to 18.3 (p < .05). The kyphotic angle improved from a mean of 14.4° before surgery to 6.7° at one day after surgery (p < .05). The mean anterior vertebral height increased significantly from 52% before surgery to 74.5% at one day after surgery (p < .05) and 70.2% at one year follow-up. Minor cement extravasations were observed in twenty-nine out of two hundred and fifty-one procedures, including six leakage via basivertebral vein, three leakage via segmental vein and twenty leakage through a cortical defect. None of the leakages were associated with any clinical consequences. CONCLUSIONS: Balloon kyphoplasty not only rapidly reduced pain and disability but also restored sagittal alignment in our patients at one-year follow-up. The treatment of osteoporotic vertebral compression fractures with balloon kyphoplasty is a safe, effective, and minimally invasive procedure that provides satisfactory clinical results.


Assuntos
Fraturas por Compressão/cirurgia , Cifoplastia/métodos , Procedimentos Cirúrgicos Minimamente Invasivos/métodos , Fraturas por Osteoporose/cirurgia , Fraturas da Coluna Vertebral/cirurgia , Idoso , Idoso de 80 Anos ou mais , Cimentos Ósseos , Avaliação da Deficiência , Feminino , Seguimentos , Humanos , Cifoplastia/instrumentação , Masculino , Pessoa de Meia-Idade , Procedimentos Cirúrgicos Minimamente Invasivos/instrumentação , Medição da Dor , Qualidade de Vida , Estudos Retrospectivos , Resultado do Tratamento
10.
JBMR Plus ; 8(5): ziae031, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38606146

RESUMO

Nonunion resulting from early bone resorption is common after bone transplantation surgery. In these patients, instability or osteoporosis causes hyperactive catabolism relative to anabolism, leading to graft resorption instead of fusion. Systemic zoledronate administration inhibits osteoclastogenesis and is widely used to prevent osteoporosis; however, evidence on local zoledronate application is controversial due to osteoblast cytotoxicity, uncontrolled dosing regimens, and local release methods. We investigated the effects of zolendronate on osteoclastogenesis and osteogenesis and explored the corresponding signaling pathways. In vitro cytotoxicity and differentiation of MC3T3E1 cells, rat bone marrow stromal cells (BMSCs) and preosteoclasts (RAW264.7 cells) were evaluated with different zolendronate concentrations. In vivo bone regeneration ability was tested by transplanting different concentrations of zolendronate with ß-tricalcium phosphate (TCP) bone substitute into rat femoral critical-sized bone defects. In vitro, zolendronate concentrations below 2.5 × 10-7 M did not compromise viability in the three cell lines and did not promote osteogenic differentiation in MC3T3E1 cells and BMSCs. In RAW264.7 cells, zoledronate inhibited extracellular regulated protein kinases and c-Jun n-terminal kinase signaling, downregulating c-Fos and NFATc1 expression, with reduced expression of fusion-related dendritic cell­specific transmembrane protein and osteoclast-specific Ctsk and tartrate-resistant acid phosphatase (. In vivo, histological staining revealed increased osteoid formation and neovascularization and reduced fibrotic tissue with 500 µM and 2000 µM zolendronate. More osteoclasts were found in the normal saline group after 6 weeks, and sequential osteoclast formation occurred after zoledronate treatment, indicating inhibition of bone resorption during early callus formation without inhibition of late-stage bone remodeling. In vivo, soaking ß-TCP artificial bone with 500 µM or 2000 µM zoledronate is a promising approach for bone regeneration, with potential applications in bone transplantation.

11.
Front Bioeng Biotechnol ; 12: 1359883, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38380264

RESUMO

Despite advancements in pedicle screw design and surgical techniques, the standard steps for inserting pedicle screws still need to follow a set of fixed procedures. The first step, known as establishing a pilot hole, also referred to as a pre-drilled hole, is crucial for ensuring screw insertion accuracy. In different surgical approaches, such as minimally invasive or traditional surgery, the method of creating pilot holes varies, resulting in different pilot hole profiles, including variations in size and shape. The aim of this study is to evaluate the biomechanical properties of different pilot hole profiles corresponding to various surgical approaches. Commercially available synthetic L4 vertebrae with a density of 0.16 g/cc were utilized as substitutes for human bone. Four different pilot hole profiles were created using a 3.0 mm cylindrical bone biopsy needle, 3.6 mm cylindrical drill, 3.2-5.0 mm conical drill, and 3.2-5.0 mm conical curette for simulating various minimally invasive and traditional spinal surgeries. Two frequently employed screw shapes, namely, cylindrical and conical, were selected. Following specimen preparation, screw pullout tests were performed using a material test machine, and statistical analysis was applied to compare the mean maximal pullout strength of each configuration. Conical and cylindrical screws in these four pilot hole configurations showed similar trends, with the mean maximal pullout strength ranking from high to low as follows: 3.0 mm cylindrical biopsy needle, 3.6 mm cylindrical drill bit, 3.2-5.0 mm conical curette, and 3.2-5.0 mm conical drill bit. Conical screws generally exhibited a greater mean maximal pullout strength than cylindrical screws in three of the four different pilot hole configurations. In the groups with conical pilot holes, created with a 3.2-5.0 mm drill bit and 3.2-5.0 mm curette, both conical screws exhibited a greater mean maximal pullout strength than did cylindrical screws. The strength of this study lies in its comprehensive comparison of the impact of various pilot hole profiles commonly used in clinical procedures on screw fixation stability, a topic rarely reported in the literature. Our results demonstrated that pilot holes created for minimally invasive surgery using image-guided techniques exhibit superior pullout strength compared to those utilized in traditional surgery. Therefore, we recommend prioritizing minimally invasive surgery when screw implantation is anticipated to be difficult or there is a specific need for stronger screw fixation. When opting for traditional surgery, image-guided methods may help establish smaller pilot holes and increase screw fixation strength.

12.
Spine J ; 24(9): 1773-1780, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38499068

RESUMO

BACKGROUND CONTEXT: Long-segment pedicle screw instrumentation is widely used to treat complex spinal disorders. Rods are routinely precontoured to maximize assistance on the correcting side of the deformity, but there often exists a residual gap discrepancy between the precontoured rods and screw tulips. No previous research has investigated the diminished pullout strength of the most proximal or distal pedicle screw resulting from a mismatched rod in long-segment pedicle screw instrumentation. PURPOSE: The present study aimed to investigate the decreased pullout force of pedicle screws affected by the gap discrepancy when forcefully engaging a mismatched rod into a tulip in a normal-density porcine spine. STUDY DESIGN: The pedicle screw fixation strength under axial pullout force was compared among three different gap discrepancies between rods and tulips using long porcine spine segments. METHODS: Twelve porcine lumbar vertebrae (L3-L6) were implanted with pedicle screws and rods. Screws on one side had no gap between the tulip and rod (0-mm group), while the most proximal screw on the other side had an intentional gap of 3 mm (3-mm group) or 6 mm (6-mm group). Three hours after forcefully engaging the rod into the tulips at room temperature, the set screws in all specimens were loosened, and each specimen was dissected into individual vertebrae for subsequent pullout testing. RESULTS: The control group exhibited significantly greater pullout strength (1987.68 ± 126.80 N) than the groups from different rod-tulip configurations (p<.05), with significantly greater strength in the 3-mm group (945.62 ± 97.43 N) than the 6-mm group (655.30 ± 194.49 N) (p<.05). Only 47.6% and 33.0% of the pullout strength was retained in the 3-mm and 6-mm groups, respectively, compared to the control group. CONCLUSIONS: Gap discrepancies between rods and tulips can significantly reduce pedicle screw pullout strength, with a correlation between decreased strength and increased gaps. Surgeons should avoid forcefully engaging mismatched rods and consider well-fitted contoured rods in spinal surgery to minimize the risk of screw loosening. CLINICAL SIGNIFICANCE: The gap discrepancy between rod and tulip significantly affected pullout strength, with greater gaps leading to reduced strength. Forcefully engaging mismatched rods into tulips in degenerative spinal surgery should be avoided to minimize the risk of early screw pullout.


Assuntos
Vértebras Lombares , Parafusos Pediculares , Fusão Vertebral , Animais , Suínos , Fenômenos Biomecânicos , Vértebras Lombares/cirurgia , Fusão Vertebral/instrumentação , Fusão Vertebral/métodos
13.
Global Spine J ; 13(1): 25-32, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33511875

RESUMO

STUDY DESIGN: Biomechanical study. OBJECTIVE: Cross-links are a type of common clinical spinal instrumentation. However, the effects of the position and number of cross-links have never been investigated in long-segment spinal fixation, and the variables have not been optimized. We conducted an in vitro biomechanical study by using a porcine long-segment spinal model with 5 different crosslink configurations to determine the optimal construct for clinical practice. METHODS: Five modalities with paired segmental screws from T15-L5 were tested in 20 porcine spines. The spines without cross-links composed the control group, Group A; those with a single cross-link from L2-3 composed Group B; those with 2 cross-links from L1-2 and L3-4 composed Group C; those with 2 cross-links from T15-L1 and L4-5 composed Group D; and those with 3 cross-links from T15-L1, L2-3 and L4-5 composed Group E. Spinal stiffnesses in flexion, extension, lateral bending, and axial rotation were compared among 5 different cross-link configurations in 5-level porcine spinal units. RESULTS: Flexional, extensional and lateral bending stiffnesses did not significantly change with an increasing number of cross-links or positions in the construct. Axial stiffness was significantly increased with 2 cross-links compared to one (P < 0.05) and with placement more distant from the center of the long spinal fixation construct (P < 0.05). CONCLUSIONS: Two cross-links individually placed proximal and distal from the center of a construct is an optimal and efficient configuration to achieve biomechanical stability in non-rigid lumbar spines undergoing long-level fixation.

14.
Front Bioeng Biotechnol ; 11: 1182265, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324423

RESUMO

Ball-and-socket designs of cervical total disc replacement (TDR) have been popular in recent years despite the disadvantages of polyethylene wear, heterotrophic ossification, increased facet contact force, and implant subsidence. In this study, a non-articulating, additively manufactured hybrid TDR with an ultra-high molecular weight polyethylene core and polycarbonate urethane (PCU) fiber jacket, was designed to mimic the motion of normal discs. A finite element (FE) study was conducted to optimize the lattice structure and assess the biomechanical performance of this new generation TDR with an intact disc and a commercial ball-and-socket Baguera®C TDR (Spineart SA, Geneva, Switzerland) on an intact C5-6 cervical spinal model. The lattice structure of the PCU fiber was constructed using the Tesseract or the Cross structures from the IntraLattice model in the Rhino software (McNeel North America, Seattle, WA) to create the hybrid I and hybrid II groups, respectively. The circumferential area of the PCU fiber was divided into three regions (anterior, lateral and posterior), and the cellular structures were adjusted. Optimal cellular distributions and structures were A2L5P2 in the hybrid I and A2L7P3 in the hybrid II groups. All but one of the maximum von Mises stresses were within the yield strength of the PCU material. The range of motions, facet joint stress, C6 vertebral superior endplate stress and path of instantaneous center of rotation of the hybrid I and II groups were closer to those of the intact group than those of the Baguera®C group under 100 N follower load and pure moment of 1.5 Nm in four different planar motions. Restoration of normal cervical spinal kinematics and prevention of implant subsidence could be observed from the FE analysis results. Superior stress distribution in the PCU fiber and core in the hybrid II group revealed that the Cross lattice structure of a PCU fiber jacket could be a choice for a next-generation TDR. This promising outcome suggests the feasibility of implanting an additively manufactured multi-material artificial disc that allows for better physiological motion than the current ball-and-socket design.

15.
Spine J ; 23(2): 315-324, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36058516

RESUMO

BACKGROUND CONTEXT: Pedicle screw-rod assembly procedures following pedicle screw insertion include contouring and placing rods into screw tulips, introducing set screws into the tulip along the screw thread, applying a counter-torque holder and tightening all the set screws clockwise. Even if an appropriate pedicle screw is implanted, screw dislodgement after tightening of the tulip and set screw is not uncommon. Pedicle wall violation resulting from excessive rotational force due to inadequate use of a counter-torque holder might be the reason. However, the strain change in the pedicle during tulip-set screw tightening and the role of counter-torque have never been investigated. PURPOSE: This study determined differences in the strain change in the outer and inner pedicle walls during tulip-set screw tightening; additionally, the influence of counter-torque on pedicle wall violation was elucidated. STUDY DESIGN: A controlled biomechanical study; the strain values of outer and inner pedicle walls in cadaveric porcine L4-L5 vertebrae during tulip-set screw tightening with or without a counter-torque holder were measured. METHODS: Twelve L4-L5 fresh-frozen porcine lumbar vertebrae were implanted with screw-rod constructs; the set screw was randomly locked into the tulip in the right L5, right L4, left L5 and left L4 testing groups. The maximal values from eight strain gauges (P-R-O: outer cortex of right pedicle in proximal vertebra; P-R-I: inner cortex of right pedicle in proximal vertebra; D-R-O: outer cortex of right pedicle in distal vertebra; D-R-I: inner cortex of right pedicle in distal vertebra; P-L-O: outer cortex of left pedicle in proximal vertebra; P-L-I: inner cortex of left pedicle in proximal vertebra; D-L-O: outer cortex of left pedicle in distal vertebra; D-L-I: outer cortex of left pedicle in proximal vertebra) for each specimen during tightening to 12 Nm were measured. RESULTS: The maximal strain values of the ipsilateral strain gauges in all testing groups were almost significantly higher when a counter-torque holder was not used than when one was used. The strain values in the adjacent pedicle of specimens without a counter-torque holder were significantly increased: P-R-O and P-R-I in the right L5 group; D-R-I in the right L4 group; P-L-I and P-L-O in the left L5 group; D-L-O and D-L-I in the left L4 group. CONCLUSIONS: The constraint effect of counter-torque during tulip-set screw tightening is necessary. Clockwise rotational force with a fragile lateral pedicle wall suggests that caution is required when using a counter-torque holder to tighten the right L5 and left L4 constructs. CLINICAL SIGNIFICANCE: A counter-torque holder is important during tulip-set screw tightening; improper use may lead to adjacent pedicle wall violation, sequentially resulting in pedicle screw loosening.


Assuntos
Parafusos Pediculares , Fusão Vertebral , Animais , Fenômenos Biomecânicos , Vértebras Lombares/cirurgia , Fusão Vertebral/métodos , Suínos , Torque
16.
Front Bioeng Biotechnol ; 11: 1151627, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37214307

RESUMO

Intraoperative pedicle screw depth adjustment after initial insertion, including both forward and backward adjustments, is sometimes necessary to facilitate rod application and ensure that the screw is in the correct position, which is determined by intraoperative fluoroscopy. Adjusting the screw with forward turns has no negative influence on the screw fixation stability; however, screw turnback may weaken the fixation stability. The aim of this study is to evaluate the biomechanical properties of screw turnback and demonstrate the reduction in the fixation stability after the screw is turned 360° from its full insertion position. Commercially available synthetic closed-cell polyurethane foams with three different densities simulating various degrees of bone density were utilized as substitutes for human bone. Two different screw shapes (cylindrical and conical) together with two different pilot hole profiles (cylindrical and conical) were tested. Following specimen preparation, screw pullout tests were conducted using a material test machine. The mean maximal pullout strength between full insertion and 360-degree turnback from full insertion in each setting was statistically analyzed. The mean maximal pullout strength after 360-degree turnback from full insertion was generally lower than that at full insertion. The reduced mean maximal pullout strength after turnback increased with decreasing bone density. Conical screws had significantly lower pullout strength after 360-degree turnback than cylindrical screws. The mean maximal pullout strength was reduced by up to approximately 27% after 360-degree turnback when using a conical screw in a low bone density specimen. Additionally, specimens treated with a conical pilot hole presented a less reduction in pullout strength after screw turnback as compared to those with a cylindrical pilot hole. The strength of our study was that we systematically investigated the effects of various bone densities and screw shapes on screw stability after turnback, which has rarely been reported in the literature. Our study suggests that pedicle screw turnback after full insertion should be reduced in spinal surgeries, particularly procedures that use conical screws in osteoporotic bone. Pedicle screw secured with a conical pilot hole might be beneficial for screw adjustment.

17.
Sci Rep ; 13(1): 454, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36624133

RESUMO

Although an anterior approach with anterior lateral screw fixation has been developed for stabilizing the thoracolumbar spine clinically, screw loosening still occurs. In this novel in vitro study, we attempted to elucidate the optimal screw position in the lateral lumbar vertebra and the effect of bicortical fixation. A total of 72 fresh-frozen lumbar vertebrae from L1-6 were harvested from 12 mature pigs and randomly assigned to two modalities: bicortical fixation (n = 36) and unicortical fixation (n = 36). Six groups of screw positions in the lateral vertebral body in each modality were designated as central-anterior, central-middle, central-posterior, lower-anterior, lower-middle, and lower- posterior; 6 specimens were used in each group. The correlations between screw fixation modalities, screw positions and axial pullout strength were analyzed. An appropriate screw trajectory and insertional depth were confirmed using axial and sagittal X-ray imaging prior to pullout testing. In both bicortical and unicortical fixation modalities, the screw pullout force was significantly higher in the posterior or middle position than in the anterior position (p < 0.05), and there was no significant differences between the central and lower positions. The maximal pullout forces from the same screw positions in unicortical fixation modalities were all significantly lower, decreases that ranged from 32.7 to 74%, than those in bicortical fixation modalities. Our study using porcine vertebrae showed that screws in the middle or posterior position of the lateral vertebral body had a higher pullout performance than those in the anterior position. Posteriorly positioned lateral vertebral screws with unicortical fixation provided better stability than anteriorly positioned screws with bicortical fixation.


Assuntos
Parafusos Ósseos , Fusão Vertebral , Suínos , Animais , Cadáver , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/cirurgia , Radiografia , Fenômenos Biomecânicos
18.
Arch Orthop Trauma Surg ; 132(6): 759-64, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22314399

RESUMO

BACKGROUND: Vertebral compression fractures are common in multiple myeloma. Percutaneous vertebroplasty is used to stabilize vertebral collapse and treat the pain. The major technical drawbacks of percutaneous vertebroplasty are the potential for neural comprise and pulmonary embolism of cement from leakage of polymethylmethacrylate into epidural space and perivertebral veins. We have retrospectively evaluated the safety and complication of percutaneous vertebroplasty in the vertebral compression fractures resulting from multiple myeloma. METHODS: From August 2003 to July 2008, we describe 24 patients with multiple myeloma who were treated for vertebral compression fractures with percutaneous vertebroplasty to a total of 36 vertebrae. There were 4 male and 20 female patients with an average age of 67 (range 54­81 years). The pain symptoms were measured on a visual analog pain scale and quality of life as measured by the physical component summary scale of the Short Form- 36 before operation and at 24 h, at 3 months and at 1 year following vertebroplasty. Radiography was reviewed for evidence of cement leakage and pulmonary complication. RESULTS: The mean visual analog pain scale decreased from a preoperative value of 9.0­3.8 at 24 h following operation and SF-36 score improved from 22.1 to 41.8. Of the twenty-four patients, four had cement leakage (2 leak through inferior endplate into disc, 2 leak into perivertebral vessels). There were no intra-postoperative neurologic or pulmonary complications. Eight patients died 2­18 months post-operatively due to multiple myeloma-related organ failure. CONCLUSIONS: In this study, vertebroplasty significantly improved pain scores and function and, thereby, the quality of life. There were no major procedure-related complications in this study. Direct cytotoxic effect, polymerization and biomechanical microfractures stabilizer of polymethylmethacrylate play multiple roles in pain relief. In multiple myeloma, when pathological spinal compression fractures cause intractable pain and are unresponsive to conservative treatment, vertebroplasty remains the best option for pain relief and is effective in increasing quality of life.


Assuntos
Fraturas por Compressão/etiologia , Fraturas por Compressão/cirurgia , Mieloma Múltiplo/complicações , Fraturas da Coluna Vertebral/etiologia , Fraturas da Coluna Vertebral/cirurgia , Vertebroplastia/métodos , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Medição da Dor , Qualidade de Vida , Análise de Sobrevida , Resultado do Tratamento
19.
J Mech Behav Biomed Mater ; 134: 105366, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35870229

RESUMO

Pedicle screw fixation is one of the most common procedures used in spinal fusion surgery. The screw loosening is a major concern, which may be caused by broken pedicles. In vitro pullout tests or insertion torque are the main approaches for assessing the stability of the screw; however, direct evidence was lacking for clinical human spines. Here, we aim to provide a model that can predict the pullout strengths of pedicle screws in various pedicle conditions from X-ray images. A weighted embedded bone volume (EBV) model is proposed for pullout strengths prediction by considering the bone heterogeneity and confinement of the screw. We showed that the pullout strength is proportional to the EBV for homogeneous bone and the weighted EBV for layered composite bone. The proposed weighted EBV model is validated with in vitro Sawbones® pullout experiments. The results show that the model has better accuracy than the simple EBV model, with a coefficient of determination of 0.94. The proposed weighted EBV model can help assess the stability of a pedicle screw in a broken pedicle by simply examining 2D X-ray images.


Assuntos
Fraturas Ósseas , Parafusos Pediculares , Fusão Vertebral , Fenômenos Biomecânicos , Humanos , Fusão Vertebral/métodos , Torque , Raios X
20.
J Neurosurg Spine ; : 1-9, 2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35561693

RESUMO

OBJECTIVE: Decreased bone mineral density as measured by dual-energy x-ray absorptiometry (DEXA) has been reported to be associated with cage subsidence following transforaminal lumbar interbody fusion (TLIF). However, DEXA is not often available or routinely performed before surgery. A novel MRI-based vertebral bone quality (VBQ) score has been developed and reported to be correlated with DEXA T-scores. The authors investigated the ability of the VBQ score to predict cage subsidence and other risk factors associated with this complication. METHODS: In this retrospective study, the authors reviewed the records of patients who had undergone single-level TLIF from March 2014 to October 2015 and had a follow-up of more than 2 years. Cage subsidence was measured as postoperative disc height loss and was graded according to the system proposed by Marchi et al. The MRI-based VBQ score was measured on T1-weighted images. Univariable analysis and multivariable binary logistic regression analysis were performed. Ad hoc analysis with receiver operating characteristic curve analysis was performed to assess the predictive ability of the significant continuous variables. Additional analyses were used to determine the correlations between the VBQ score and T-scores and between the significant continuous variables and the amount of cage subsidence. RESULTS: Among 242 patients eligible for study inclusion, 111 (45.87%) had cage subsidence after the index operation. Multivariable logistic regression analyses demonstrated that an increased VBQ score (OR 14.615 ± 0.377, p < 0.001), decreased depth ratio (OR 0.011 ± 1.796, p = 0.013), and the use of kidney-shaped cages instead of bullet-shaped cages (OR 2.766 ± 0.358, p = 0.008) were associated with increased cage subsidence. The VBQ score was shown to significantly predict cage subsidence with an accuracy of 85.6%. The VBQ score was found to be moderately correlated with DEXA T-scores of the total hip (r = -0.540, p < 0.001) and the lumbar spine (r = -0.546, p < 0.001). The amount of cage subsidence was moderately correlated with the VBQ score (r = 0.512, p < 0.001). CONCLUSIONS: Increased VBQ scores, posteriorly placed cages, and kidney-shaped cages were risk factors for cage subsidence. The VBQ score was shown to be a good predictor of cage subsidence, was moderately correlated with DEXA T-scores for the total hip and lumbar spine, and also had a moderate correlation with the amount of cage subsidence.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa