Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Planta ; 259(4): 89, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467941

RESUMO

MAIN CONCLUSION: Taiwan oil millet has two types of epicuticular wax: platelet wax composed primarily of octacosanol and filament wax constituted essentially by the singular compound of octacosanoic acid. Taiwan oil millet (TOM-Eccoilopus formosanus) is an orphan crop cultivated by the Taiwan indigenous people. It has conspicuous white powder covering its leaf sheath indicating abundant epicuticular waxes, that may contribute to its resilience. Here, we characterized the epicuticular wax secretion in TOM leaf blade and leaf sheath using various microscopy techniques, as well as gas chromatography to determine its composition. Two kinds of waxes, platelet and filaments, were secreted in both the leaf blades and sheaths. The platelet wax is secreted ubiquitously by epidermal cells, whereas the filament wax is secreted by a specific cell called epidermal cork cells. The newly developed filament waxes were markedly re-synthesized by the epidermal cork cells through papillae protrusions on the external periclinal cell wall. Ultrastructural images of cork cell revealed the presence of cortical endoplasmic reticulum (ER) tubules along the periphery of plasma membrane (PM) and ER-PM contact sites (EPCS). The predominant wax component was a C28 primary alcohol in leaf blade, and a C28 free fatty acid in the leaf sheath, pseudopetiole and midrib. The wax morphology present in distinct plant organs corresponds to the specific chemical composition: platelet wax composed of alcohols exists mainly in the leaf blade, whereas filament wax constituted mainly by the singular compound C28 free fatty acids is present abundantly in leaf sheath. Our study clarifies the filament wax composition in relation to a previous study in sorghum. Both platelet and filament waxes comprise a protection barrier for TOM.


Assuntos
Milhetes , Sorghum , Humanos , Taiwan , Microscopia Eletrônica de Varredura , Sorghum/metabolismo , Ceras/metabolismo , Folhas de Planta/metabolismo , Epiderme Vegetal/metabolismo
2.
Plant Biotechnol J ; 22(5): 1417-1432, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38193234

RESUMO

Root architecture and function are critical for plants to secure water and nutrient supply from the soil, but environmental stresses alter root development. The phytohormone jasmonic acid (JA) regulates plant growth and responses to wounding and other stresses, but its role in root development for adaptation to environmental challenges had not been well investigated. We discovered a novel JA Upregulated Protein 1 gene (JAUP1) that has recently evolved in rice and is specific to modern rice accessions. JAUP1 regulates a self-perpetuating feed-forward loop to activate the expression of genes involved in JA biosynthesis and signalling that confers tolerance to abiotic stresses and regulates auxin-dependent root development. Ectopic expression of JAUP1 alleviates abscisic acid- and salt-mediated suppression of lateral root (LR) growth. JAUP1 is primarily expressed in the root cap and epidermal cells (EPCs) that protect the meristematic stem cells and emerging LRs. Wound-activated JA/JAUP1 signalling promotes crosstalk between the root cap of LR and parental root EPCs, as well as induces cell wall remodelling in EPCs overlaying the emerging LR, thereby facilitating LR emergence even under ABA-suppressive conditions. Elevated expression of JAUP1 in transgenic rice or natural rice accessions enhances abiotic stress tolerance and reduces grain yield loss under a limited water supply. We reveal a hitherto unappreciated role for wound-induced JA in LR development under abiotic stress and suggest that JAUP1 can be used in biotechnology and as a molecular marker for breeding rice adapted to extreme environmental challenges and for the conservation of water resources.


Assuntos
Ciclopentanos , Oryza , Oxilipinas , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Melhoramento Vegetal , Reguladores de Crescimento de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/genética
3.
Plant Physiol ; 193(2): 1297-1312, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37394940

RESUMO

During transgenic plant production, tissue culture often carries epigenetic, and genetic changes that underlie somaclonal variations, leading to unpredictable phenotypes. Additionally, specific treatments for rice (Oryza sativa) transformation processes may individually or jointly contribute to somaclonal variations, but their specific impacts on rice epigenomes toward transcriptional variations remain unknown. Here, the impact of individual transformation treatments on genome-wide DNA methylation and the transcriptome were examined. In addition to activating stress-responsive genes, individual transformation components targeted different gene expression modules that were enriched in specific functional categories. The transformation treatments strongly impacted DNA methylation and expression; 75% were independent of tissue culture. Furthermore, our genome-wide analysis showed that the transformation treatments consistently resulted in global hypo-CHH methylation enriched at promoters highly associated with downregulation, particularly when the promoters were colocalized with miniature inverted-repeat transposable elements. Our results clearly highlight the specificity of impacts triggered by individual transformation treatments during rice transformation with the potential association between DNA methylation and gene expression. These changes in gene expression and DNA methylation resulting from rice transformation treatments explain a significant portion of somaclonal variations, that is, way beyond the tissue culture effect.


Assuntos
Oryza , Oryza/genética , Epigenoma , Metilação de DNA/genética , Fenótipo , Elementos de DNA Transponíveis , Regulação da Expressão Gênica de Plantas
4.
Plant Cell Environ ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38924092

RESUMO

The rice Zaxinone Synthase (ZAS) gene encodes a carotenoid cleavage dioxygenase (CCD) that forms the apocarotenoid growth regulator zaxinone in vitro. Here, we generated and characterized constitutive ZAS-overexpressing rice lines, to better understand ZAS role in determining zaxinone content and regulating growth and architecture. ZAS overexpression enhanced endogenous zaxinone level, promoted root growth and increased the number of productive tillers, leading to about 30% higher grain yield per plant. Hormone analysis revealed a decrease in strigolactone (SL) content, which we confirmed by rescuing the high-tillering phenotype through application of a SL analogue. Metabolomics analysis revealed that ZAS overexpressing plants accumulate higher amounts of monosaccharide sugars, in line with transcriptome analysis. Moreover, transgenic plants showed higher carbon (C) assimilation rate and elevated root phosphate, nitrate and sulphate level, enhancing the tolerance towards low phosphate (Pi). Our study confirms ZAS as an important determinant of rice growth and architecture and shows that ZAS regulates hormone homoeostasis and a combination of physiological processes to promote growth and grain yield, which makes this gene an excellent candidate for sustainable crop improvement.

5.
Plant Cell Environ ; 46(8): 2507-2522, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37212208

RESUMO

Field-grown rice (Oryza sativa L.), when exposed to various environmental stresses, produces high amounts of reactive oxygen species, such as H2 O2 . MicroRNAs (miRNAs) play crucial roles in plant stress responses. This study characterized the functions of H2 O2 -regulated miRNAs in rice. Small RNA deep sequencing revealed that miR156 levels decreased following H2 O2 treatment. Searches of the rice transcriptome and degradome databases indicated that OsSPL2 and OsTIFY11b are miR156-target genes. Interactions between miR156 and OsSPL2 and OsTIFY11b were confirmed using transient expression assays through agroinfiltration. In addition, the levels of OsSPL2 and OsTIFY11b transcripts were lower in transgenic rice plants overexpressing miR156 than in wild-type plants. The OsSPL2-GFP and OsTIFY11b-GFP proteins were localized to the nucleus. Yeast two-hybrid and bimolecular fluorescence complementation assays indicated interactions between OsSPL2 and OsTIFY11b. Furthermore, OsTIFY11b interacted with OsMYC2 to regulate the expression of OsRBBI3-3, which encodes a proteinase inhibitor. The results suggested that H2 O2 accumulation in rice suppresses the expression of miR156, and induces the expression of its target genes, OsSPL2 and OsTIFY11b, whose proteins interact in the nucleus to regulate the expression of OsRBBI3-3, which is involved in plant defense.


Assuntos
MicroRNAs , Oryza , Oryza/genética , Oryza/metabolismo , Peróxido de Hidrogênio/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Sequência de Bases , Estresse Fisiológico/genética , Plantas Geneticamente Modificadas/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
Mol Biol Evol ; 38(11): 4832-4846, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34240169

RESUMO

The dispersal of rice (Oryza sativa) following domestication influenced massive social and cultural changes across South, East, and Southeast (SE) Asia. The history of dispersal across islands of SE Asia, and the role of Taiwan and the Austronesian expansion in this process remain largely unresolved. Here, we reconstructed the routes of dispersal of O. sativa ssp. japonica rice to Taiwan and the northern Philippines using whole-genome resequencing of indigenous rice landraces coupled with archaeological and paleoclimate data. Our results indicate that japonica rice found in the northern Philippines diverged from Indonesian landraces as early as 3,500 years before present (BP). In contrast, rice cultivated by the indigenous peoples of the Taiwanese mountains has complex origins. It comprises two distinct populations, each best explained as a result of admixture between temperate japonica that presumably came from northeast Asia, and tropical japonica from the northern Philippines and mainland SE Asia, respectively. We find that the temperate japonica component of these indigenous Taiwan populations diverged from northeast Asia subpopulations at about 2,600 BP, whereas gene flow from the northern Philippines had begun before ∼1,300 BP. This coincides with a period of intensified trade established across the South China Sea. Finally, we find evidence for positive selection acting on distinct genomic regions in different rice subpopulations, indicating local adaptation associated with the spread of japonica rice.


Assuntos
Oryza , Sudeste Asiático , Domesticação , Fluxo Gênico , Oryza/genética , Taiwan
7.
Plant Cell Rep ; 41(2): 319-335, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34837515

RESUMO

KEY MESSAGE: Elevated expression of nucleotide-binding and leucine-rich repeat proteins led to closer vein spacing and higher vein density in rice leaves. To feed the growing global population and mitigate the negative effects of climate change, there is a need to improve the photosynthetic capacity and efficiency of major crops such as rice to enhance grain yield potential. Alterations in internal leaf morphology and cellular architecture are needed to underpin some of these improvements. One of the targets is to generate a "Kranz-like" anatomy in leaves that includes decreased interveinal spacing close to that in C4 plant species. As C4 photosynthesis has evolved from C3 photosynthesis independently in multiple lineages, the genes required to facilitate C4 may already be present in the rice genome. The Taiwan Rice Insertional Mutants (TRIM) population offers the advantage of gain-of-function phenotype trapping, which accelerates the identification of rice gene function. In the present study, we screened the TRIM population to determine the extent to which genetic plasticity can alter vein density (VD) in rice. Close vein spacing mutant 1 (CVS1), identified from a VD screening of approximately 17,000 TRIM lines, conferred heritable high leaf VD. Increased vein number in CVS1 was confirmed to be associated with activated expression of two nucleotide-binding and leucine-rich repeat (NB-LRR) proteins. Overexpression of the two NB-LRR genes individually in rice recapitulates the high VD phenotype, due mainly to reduced interveinal mesophyll cell (M cell) number, length, bulliform cell size and thus interveinal distance. Our studies demonstrate that the trait of high VD in rice can be achieved by elevated expression of NB-LRR proteins limited to no yield penalty.


Assuntos
Proteínas de Repetições Ricas em Leucina/genética , Proteínas NLR/genética , Oryza/genética , Folhas de Planta/anatomia & histologia , Proteínas de Plantas/genética , DNA Bacteriano , Resistência à Doença/genética , Expressão Ectópica do Gene , Regulação da Expressão Gênica de Plantas , Proteínas de Repetições Ricas em Leucina/metabolismo , Células do Mesofilo , Mutação , Proteínas NLR/metabolismo , Oryza/anatomia & histologia , Fotossíntese , Folhas de Planta/citologia , Folhas de Planta/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Plântula/anatomia & histologia , Plântula/genética
8.
Physiol Plant ; 172(4): 1853-1866, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33749847

RESUMO

Drought stress in plants causes differential expression of numerous genes. One of these differentially expressed genes in rice is a specific amidohydrolase. We characterized this amidohydrolase gene on the rice chromosome 12 as the first plant guanine deaminase (OsGDA1). The biochemical activity of GDA is known from tea and coffee plants where its catalytic product, xanthine, is the precursor for theine and caffeine. However, no plant gene that is coding for GDA is known so far. Recombinant OsGDA1 converted guanine to xanthine in vitro. Measurement of guanine and xanthine contents in the OsGDA1 knockout (KO) line and in the wild type Tainung 67 rice plants also suggested GDA activity in vivo. The content of cellular xanthine is important because of its catabolic products allantoin, ureides, and urea which play roles in water and nitrogen stress tolerance among others. The identification of OsGDA1 fills a critical gap in the S-adenosyl-methionine (SAM) to xanthine pathway. SAM is converted to S-adenosyl-homocysteine (SAH) and finally to xanthine. SAH is a potent inhibitor of DNA methyltransferases, the reduction of which leads to increased DNA methylation and gene silencing in Arabidopsis. We report that the OsGDA1 KO line exhibited a decrease in SAM, SAH and adenosine and an increase in rice genome methylation. The OsGDA1 protein phylogeny combined with mutational protein destabilization analysis suggested artificial selection for null mutants, which could affect genome methylation as in the KO line. Limited information on genes that may affect epigenetics indirectly requires deeper insights into such a role and effect of purine catabolism and related genetic networks.


Assuntos
Guanina Desaminase , Oryza , Amidoidrolases/genética , Amidoidrolases/metabolismo , Secas , Epigenoma , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/metabolismo
9.
Int J Mol Sci ; 22(15)2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34360554

RESUMO

Leaf angle and grain size are important agronomic traits affecting rice productivity directly and/or indirectly through modulating crop architecture. OsBC1, as a typical bHLH transcription factor, is one of the components comprising a complex formed with LO9-177 and OsBUL1 contributing to modulation of rice leaf inclination and grain size. In the current study, two homologues of OsBC1, OsBCL1 and OsBCL2 were functionally characterized by expressing them under the control of OsBUL1 promoter, which is preferentially expressed in the lamina joint and the spikelet of rice. Increased leaf angle and grain length with elongated cells in the lamina joint and the grain hull were observed in transgenic rice containing much greater gibberellin A3 (GA3) levels than WT, demonstrating that both OsBCL1 and OsBCL2 are positive regulators of cell elongation at least partially through increased GA biosynthesis. Moreover, the cell elongation was likely due to cell expansion rather than cell division based on the related gene expression and, the cell elongation-promoting activities of OsBCL1 and OsBCL2 were functional in a dicot species, Arabidopsis.


Assuntos
Regulação da Expressão Gênica de Plantas , Oryza/anatomia & histologia , Fenótipo , Folhas de Planta/anatomia & histologia , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Oryza/genética , Oryza/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Transdução de Sinais
10.
Plant Biotechnol J ; 18(9): 1969-1983, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32034845

RESUMO

Grain/seed yield and plant stress tolerance are two major traits that determine the yield potential of many crops. In cereals, grain size is one of the key factors affecting grain yield. Here, we identify and characterize a newly discovered gene Rice Big Grain 1 (RBG1) that regulates grain and organ development, as well as abiotic stress tolerance. Ectopic expression of RBG1 leads to significant increases in the size of not only grains but also other major organs such as roots, shoots and panicles. Increased grain size is primarily due to elevated cell numbers rather than cell enlargement. RBG1 is preferentially expressed in meristematic and proliferating tissues. Ectopic expression of RBG1 promotes cell division, and RBG1 co-localizes with microtubules known to be involved in cell division, which may account for the increase in organ size. Ectopic expression of RBG1 also increases auxin accumulation and sensitivity, which facilitates root development, particularly crown roots. Moreover, overexpression of RBG1 up-regulated a large number of heat-shock proteins, leading to enhanced tolerance to heat, osmotic and salt stresses, as well as rapid recovery from water-deficit stress. Ectopic expression of RBG1 regulated by a specific constitutive promoter, GOS2, enhanced harvest index and grain yield in rice. Taken together, we have discovered that RBG1 regulates two distinct and important traits in rice, namely grain yield and stress tolerance, via its effects on cell division, auxin and stress protein induction.


Assuntos
Oryza , Divisão Celular , Grão Comestível/metabolismo , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
11.
BMC Plant Biol ; 19(1): 563, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31852430

RESUMO

BACKGROUND: MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression at the post-transcriptional level in eukaryotes. In rice, MIR7695 expression is regulated by infection with the rice blast fungus Magnaporthe oryzae with subsequent down-regulation of an alternatively spliced transcript of natural resistance-associated macrophage protein 6 (OsNramp6). NRAMP6 functions as an iron transporter in rice. RESULTS: Rice plants grown under high iron supply showed blast resistance, which supports that iron is a factor in controlling blast resistance. During pathogen infection, iron accumulated in the vicinity of M. oryzae appressoria, the sites of pathogen entry, and in cells surrounding infected regions of the rice leaf. Activation-tagged MIR7695 rice plants (MIR7695-Ac) exhibited enhanced iron accumulation and resistance to M. oryzae infection. RNA-seq analysis revealed that blast resistance in MIR7695-Ac plants was associated with strong induction of defense-related genes, including pathogenesis-related and diterpenoid biosynthetic genes. Levels of phytoalexins during pathogen infection were higher in MIR7695-Ac than wild-type plants. Early phytoalexin biosynthetic genes, OsCPS2 and OsCPS4, were also highly upregulated in wild-type rice plants grown under high iron supply. CONCLUSIONS: Our data support a positive role of miR7695 in regulating rice immunity that further underpin links between defense and iron signaling in rice. These findings provides a basis to better understand regulatory mechanisms involved in rice immunity in which miR7695 participates which has a great potential for the development of strategies to improve blast resistance in rice.


Assuntos
Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Magnaporthe/fisiologia , Oryza/genética , Oryza/imunologia , Doenças das Plantas/imunologia , RNA de Plantas/genética , MicroRNAs/genética , MicroRNAs/metabolismo , RNA de Plantas/metabolismo
12.
Ann Bot ; 123(1): 79-93, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30032201

RESUMO

Background and Aims: MicroRNAs (miRNAs) are small non-coding RNAs that act as post-transcriptional regulators of gene expression via sequence-specific cleavage or translational repression of target transcripts. They are transcribed as long single-stranded RNA precursors with unique stem-loop structures that are processed by a DICER-Like (DCL) ribonuclease, typically DCL1, to produce mature miRNAs. Although a plethora of miRNAs have been found to be regulated by pathogen infection in plants, the biological function of most miRNAs remains largely unknown. Here, the contribution of OsDCL1 to rice immunity was investigated. Methods: Activation-tagged Osdcl1a (Osdcl1a-Ac) rice mutants were examined for resistance to pathogen infection. mRNA and small RNA deep sequencing, quantitative real-time PCR (RT-qPCR) and stem-loop reverse tanscripion-PCR (RT-PCR) were used to examine DCL1a-mediated alterations in the rice transcriptome. Rice diterpene phytoalexins were quantified by liquid chromatography-tandem mass spectrometry (LC-MSMS). Accumulation of O2·- was determined by nitroblue tetrazolium (NBT) staining. Key Results: dcl1a-Ac mutants exhibit enhanced susceptibility to infection by fungal pathogens which was associated with a weaker induction of defence gene expression. Comparison of the mRNA and miRNA transcriptomes of dcl1a-Ac and wild-type plants revealed misregulation of genes involved in detoxification of reactive oxygen species. Consequently, dcl1a-Ac plants accumulated O2·- in their leaves and were more sensitive to methyl viologen-induced oxidative stress. Furthermore, dcl1a-Ac plants showed downregulation of diterpenoid phytoalexin biosynthetic genes, these genes also being weakly induced during pathogen infection. Upon pathogen challenge, dcl1a-Ac plants failed to accumulate major diterpenoid phytoalexins. OsDCL1a activation resulted in marked alterations in the rice miRNAome, including both upregulation and downregulation of miRNAs. Conclusions: OsDCL1a activation enhances susceptibility to infection by fungal pathogens in rice. Activation of OsDCL1a represses the pathogen-inducible host defence response and negatively regulates diterpenoid phytoalexin production. These findings provide a basis to understand the molecular mechanisms through which OsDCL1a mediates rice immunity.


Assuntos
Magnaporthe/fisiologia , Oryza/genética , Doenças das Plantas/genética , Proteínas de Plantas/genética , Sesquiterpenos/metabolismo , Resistência à Doença , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Fitoalexinas
13.
Mol Biol Evol ; 34(4): 969-979, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28087768

RESUMO

The origin of domesticated Asian rice (Oryza sativa) has been a contentious topic, with conflicting evidence for either single or multiple domestication of this key crop species. We examined the evolutionary history of domesticated rice by analyzing de novo assembled genomes from domesticated rice and its wild progenitors. Our results indicate multiple origins, where each domesticated rice subpopulation (japonica, indica, and aus) arose separately from progenitor O. rufipogon and/or O. nivara. Coalescence-based modeling of demographic parameters estimate that the first domesticated rice population to split off from O. rufipogon was O. sativa ssp. japonica, occurring at ∼13.1-24.1 ka, which is an order of magnitude older then the earliest archeological date of domestication. This date is consistent, however, with the expansion of O. rufipogon populations after the Last Glacial Maximum ∼18 ka and archeological evidence for early wild rice management in China. We also show that there is significant gene flow from japonica to both indica (∼17%) and aus (∼15%), which led to the transfer of domestication alleles from early-domesticated japonica to proto-indica and proto-aus populations. Our results provide support for a model in which different rice subspecies had separate origins, but that de novo domestication occurred only once, in O. sativa ssp. japonica, and introgressive hybridization from early japonica to proto-indica and proto-aus led to domesticated indica and aus rice.


Assuntos
Adaptação Biológica/genética , Fluxo Gênico/genética , Oryza/genética , Alelos , Evolução Biológica , Produtos Agrícolas/genética , Domesticação , Evolução Molecular , Genes de Plantas/genética , Especiação Genética , Variação Genética/genética , Oryza/metabolismo , Filogenia , Alinhamento de Sequência/métodos , Análise de Sequência de DNA/métodos
14.
Plant J ; 85(5): 648-59, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26833589

RESUMO

Rice (Oryza sativa) is one of the world's most important crops. Rice researchers make extensive use of insertional mutants for the study of gene function. Approximately half a million flanking sequence tags from rice insertional mutant libraries are publicly available. However, the relationship between genotype and phenotype is very weak. Transgenic plant assays have been used frequently for complementation, overexpression or antisense analysis, but sequence changes caused by callus growth, Agrobacterium incubation medium, virulence genes, transformation and selection conditions are unknown. We used high-throughput sequencing of DNA from rice lines derived from Tainung 67 to analyze non-transformed and transgenic rice plants for mutations caused by these parameters. For comparison, we also analyzed sequence changes for two additional rice varieties and four T-DNA tagged transformants from the Taiwan Rice Insertional Mutant resource. We identified single-nucleotide polymorphisms, small indels, large deletions, chromosome doubling and chromosome translocations in these lines. Using standard rice regeneration/transformation procedures, the mutation rates of regenerants and transformants were relatively low, with no significant differences among eight tested treatments in the Tainung 67 background and in the cultivars Taikeng 9 and IR64. Thus, we could not conclusively detect sequence changes resulting from Agrobacterium-mediated transformation in addition to those caused by tissue culture-induced somaclonal variation. However, the mutation frequencies within the two publically available tagged mutant populations, including TRIM transformants or Tos17 lines, were about 10-fold higher than the frequency of standard transformants, probably because mass production of embryogenic calli and longer callus growth periods were required to generate these large libraries.


Assuntos
Estudos de Associação Genética/métodos , Variação Genética , Oryza/genética , Transformação Genética/genética , Agrobacterium/genética , Células Clonais/metabolismo , Produtos Agrícolas/genética , DNA Bacteriano/genética , DNA de Plantas/química , DNA de Plantas/genética , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mutação INDEL , Mutagênese Insercional , Oryza/classificação , Fenótipo , Plantas Geneticamente Modificadas , Ploidias , Polimorfismo de Nucleotídeo Único , Especificidade da Espécie , Taiwan , Técnicas de Cultura de Tecidos/métodos
15.
Plant Cell Environ ; 39(5): 998-1013, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26301381

RESUMO

Rice is an important crop and major model plant for monocot functional genomics studies. With the establishment of various genetic resources for rice genomics, the next challenge is to systematically assign functions to predicted genes in the rice genome. Compared with the robustness of genome sequencing and bioinformatics techniques, progress in understanding the function of rice genes has lagged, hampering the utilization of rice genes for cereal crop improvement. The use of transfer DNA (T-DNA) insertional mutagenesis offers the advantage of uniform distribution throughout the rice genome, but preferentially in gene-rich regions, resulting in direct gene knockout or activation of genes within 20-30 kb up- and downstream of the T-DNA insertion site and high gene tagging efficiency. Here, we summarize the recent progress in functional genomics using the T-DNA-tagged rice mutant population. We also discuss important features of T-DNA activation- and knockout-tagging and promoter-trapping of the rice genome in relation to mutant and candidate gene characterizations and how to more efficiently utilize rice mutant populations and datasets for high-throughput functional genomics and phenomics studies by forward and reverse genetics approaches. These studies may facilitate the translation of rice functional genomics research to improvements of rice and other cereal crops.


Assuntos
Genômica/métodos , Oryza/genética , Pesquisa , Técnicas de Inativação de Genes , Mutação/genética , Genética Reversa
16.
BMC Genomics ; 16: 538, 2015 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-26194356

RESUMO

BACKGROUND: Comparative evolutionary analysis of whole genomes requires not only accurate annotation of gene space, but also proper annotation of the repetitive fraction which is often the largest component of most if not all genomes larger than 50 kb in size. RESULTS: Here we present the Rice TE database (RiTE-db)--a genus-wide collection of transposable elements and repeated sequences across 11 diploid species of the genus Oryza and the closely-related out-group Leersia perrieri. The database consists of more than 170,000 entries divided into three main types: (i) a classified and curated set of publicly-available repeated sequences, (ii) a set of consensus assemblies of highly-repetitive sequences obtained from genome sequencing surveys of 12 species; and (iii) a set of full-length TEs, identified and extracted from 12 whole genome assemblies. CONCLUSIONS: This is the first report of a repeat dataset that spans the majority of repeat variability within an entire genus, and one that includes complete elements as well as unassembled repeats. The database allows sequence browsing, downloading, and similarity searches. Because of the strategy adopted, the RiTE-db opens a new path to unprecedented direct comparative studies that span the entire nuclear repeat content of 15 million years of Oryza diversity.


Assuntos
Bases de Dados Genéticas , Evolução Molecular , Genoma de Planta , Oryza/genética , Elementos de DNA Transponíveis/genética , Genômica , Software
17.
RNA Biol ; 12(8): 847-63, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26083154

RESUMO

MicroRNAs (miRNAs) are small non-coding RNAs that have important regulatory functions in plant growth, development, and response to abiotic stress. Increasing evidence also supports that plant miRNAs contribute to immune responses to pathogens. Here, we used deep sequencing of small RNA libraries for global identification of rice miRNAs that are regulated by fungal elicitors. We also describe 9 previously uncharacterized miRNAs in rice. Combined small RNA and degradome analyses revealed regulatory networks enriched in elicitor-regulated miRNAs supported by the identification of their corresponding target genes. Specifically, we identified an important number of miRNA/target gene pairs involved in small RNA pathways, including miRNA, heterochromatic and trans-acting siRNA pathways. We present evidence for miRNA/target gene pairs implicated in hormone signaling and cross-talk among hormone pathways having great potential in regulating rice immunity. Furthermore, we describe miRNA-mediated regulation of Conserved-Peptide upstream Open Reading Frame (CPuORF)-containing genes in rice, which suggests the existence of a novel regulatory network that integrates miRNA and CPuORF functions in plants. The knowledge gained in this study will help in understanding the underlying regulatory mechanisms of miRNAs in rice immunity and develop appropriate strategies for rice protection.


Assuntos
Fungos/crescimento & desenvolvimento , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Oryza/genética , RNA de Plantas/genética , Sequência de Aminoácidos , Sequência de Bases , Northern Blotting , Fungos/fisiologia , Genes de Plantas/genética , Genoma de Planta/genética , Sequenciamento de Nucleotídeos em Larga Escala , Interações Hospedeiro-Patógeno , Dados de Sequência Molecular , Fases de Leitura Aberta/genética , Oryza/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/microbiologia , Raízes de Plantas/genética , Raízes de Plantas/microbiologia , Homologia de Sequência de Aminoácidos
18.
Plant J ; 75(5): 781-94, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23663233

RESUMO

Small RNAs (sRNAs) play important roles in plants under stress conditions. However, limited research has been performed on the sRNAs involved in plant wound responses. In the present study, a novel wounding-induced sRNA, sRNA8105, was identified in sweet potato (Ipomoea batatas cv. Tainung 57) using microarray analysis. It was found that expression of sRNA8105 increased after mechanical wounding. Furthermore, Dicer-like 1 (DCL1) is required for the sRNA8105 precursor (pre-sRNA8105) to generate 22 and 24 nt mature sRNA8105. sRNA8105 targeted the first intron of IbMYB1 (MYB domain protein 1) before RNA splicing, and mediated RNA cleavage and DNA methylation of IbMYB1. The interaction between sRNA8105 and IbMYB1 was confirmed by cleavage site mapping, agro-infiltration analyses, and use of a transgenic sweet potato over-expressing pre-sRNA8105 gene. Induction of IbMYB1-siRNA was observed in the wild-type upon wounding and in transgenic sweet potato over-expressing pre-sRNA8105 gene without wounding, resulting in decreased expression of the whole IbMYB1 gene family, i.e. IbMYB1 and the IbMYB2 genes, and thus directing metabolic flux toward biosynthesis of lignin in the phenylpropanoid pathway. In conclusion, sRNA8105 induced by wounding binds to the first intron of IbMYB1 RNA to methylate IbMYB1, cleave IbMYB1 RNA, and trigger production of secondary siRNAs, further repressing the expression of the IbMYB1 family genes and regulating the phenylpropanoid pathway.


Assuntos
Metilação de DNA , Ipomoea batatas/genética , Proteínas de Plantas/genética , RNA de Plantas/fisiologia , RNA Interferente Pequeno/fisiologia , Fatores de Transcrição/genética , Vias Biossintéticas , Flavonoides/biossíntese , Regulação da Expressão Gênica de Plantas , Íntrons , Ipomoea batatas/metabolismo , Ipomoea batatas/fisiologia , Lignina/biossíntese , Conformação de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas de Plantas/metabolismo , RNA de Plantas/metabolismo , RNA Interferente Pequeno/metabolismo , Estresse Fisiológico/genética , Fatores de Transcrição/metabolismo
19.
BMC Genomics ; 15: 15, 2014 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-24405808

RESUMO

BACKGROUND: Degradation is essential for RNA maturation, turnover, and quality control. RNA degradome sequencing that integrates a modified 5'-rapid amplification of cDNA ends protocol with next-generation sequencing technologies is a high-throughput approach for profiling the 5'-end of uncapped RNA fragments on a genome-wide scale. The primary application of degradome sequencing has been to identify the truncated transcripts that result from endonucleolytic cleavage guided by microRNAs or small interfering RNAs. As many pathways are involved in RNA degradation, degradome data should contain other RNA species besides the cleavage remnants of small RNA targets. Nevertheless, no systematic approaches have been established to explore the hidden complexity of plant degradome. RESULTS: Through analyzing Arabidopsis and rice RNA degradome data, we recovered 11 short motifs adjacent to predominant and abundant uncapped 5'-ends. Uncapped ends associated with several of these short motifs were more prevalent than those targeted by most miRNA families especially in the 3' untranslated region of transcripts. Through genome-wide analysis, five motifs showed preferential accumulation of uncapped 5'-ends at the same position in Arabidopsis and rice. Moreover, the association of uncapped 5'-ends with a CA-repeat motif and a motif recognized by Pumilio/Fem-3 mRNA binding factor (PUF) proteins was also found in non-plant species, suggesting that common mechanisms are present across species. Based on these motifs, potential sources of RNA ends that constitute degradome data were proposed and further examined. The 5'-end of small nucleolar RNAs could be precisely captured by degradome sequencing. Position-specific enrichment of uncapped 5'-ends was seen upstream of motifs recognized by several RNA binding proteins especially for the binding site of PUF proteins. False uncapped 5'-ends produced from capped transcripts through non-specific PCR amplification were common artifacts among degradome datasets. CONCLUSIONS: The complexity of plant RNA degradome data revealed in this study may contribute to the alternative applications of degradome in RNA research.


Assuntos
Arabidopsis/genética , Oryza/genética , Estabilidade de RNA , RNA de Plantas/metabolismo , Regiões 3' não Traduzidas , Regiões 5' não Traduzidas , Sequência de Bases , Sítios de Ligação , Genoma de Planta , MicroRNAs/química , MicroRNAs/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Clivagem do RNA , RNA de Plantas/química , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Análise de Sequência de RNA
20.
Mol Plant ; 16(9): 1460-1477, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37674315

RESUMO

Improving grain quality is a primary objective in contemporary rice breeding. Japanese modern rice breeding has developed two different types of rice, eating and sake-brewing rice, with different grain characteristics, indicating the selection of variant gene alleles during the breeding process. Given the critical importance of promptly and efficiently identifying genes selected in past breeding for future molecular breeding, we conducted genome scans for divergence, genome-wide association studies, and map-based cloning. Consequently, we successfully identified two genes, OsMnS and OsWOX9D, both contributing to rice grain traits. OsMnS encodes a mannan synthase that increases the white core frequency in the endosperm, a desirable trait for sake brewing but decreases the grain appearance quality. OsWOX9D encodes a grass-specific homeobox-containing transcription factor, which enhances grain width for better sake brewing. Furthermore, haplotype analysis revealed that their defective alleles were selected in East Asia, but not Europe, during modern improvement. In addition, our analyses indicate that a reduction in grain mannan content during African rice domestication may also be caused a defective OsMnS allele due to breeding selection. This study not only reveals the delicate balance between grain appearance quality and nutrition in rice but also provides a new strategy for isolating causal genes underlying complex traits, based on the concept of "breeding-assisted genomics" in plants.


Assuntos
Oryza , Proteínas de Saccharomyces cerevisiae , Oryza/genética , Bebidas Alcoólicas , Estudo de Associação Genômica Ampla , Mananas , Fermentação , Saccharomyces cerevisiae , Melhoramento Vegetal , Grão Comestível/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa