Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 10(9)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37760144

RESUMO

Spinal fusion surgery leads to the restriction of mobility in the vertebral segments postoperatively, thereby causing stress to rise at the adjacent levels, resulting in early degeneration and a high risk of adjacent vertebral fractures. Thus, to address this issue, non-fusion surgery applies some pedicle screw-based dynamic stabilisation systems to provide stability and micromotion, thereby reducing stress in the fusion segments. Among these systems, the hybrid performance stabilisation system (HPSS) combines a rigid rod, transfer screw, and coupler design to offer a semi-rigid fixation method that preserves some mobility near the fusion site and reduces the adjacent segment compensatory effects. However, further research and confirmation are needed regarding the biomechanical effects of the dynamic coupler stiffness of the HPSS on the intrinsic degenerated adjacent segment. Therefore, this study utilised the finite element method to investigate the impact of the coupler stiffness of the HPSS on the mobility of the lumbar vertebral segments and the stress distribution in the intervertebral discs under flexion, extension, and lateral bending, as well as the clinical applicability of the HPSS on the discs with intrinsic moderate and severe degeneration at the adjacent level. The analytical results indicated that, regardless of the degree of disc degeneration, the use of a dynamic coupler stiffness of 57 N/mm in the HPSS may reduce the stress concentrations at the adjacent levels. However, for severely degenerated discs, the postoperative stress on the adjacent segments with the HPSS was still higher compared with that of the discs with moderate degeneration. We conclude that, when the discs had moderate degeneration, increasing the coupler stiffness led to a decrease in disc mobility. In the case of severe disc degeneration, the effect on disc mobility by coupler stiffness was less pronounced. Increasing the coupler stiffness ked to higher stress on intervertebral discs with moderate degeneration, while its effect on stress was less pronounced for discs with severe degeneration. It is recommended that patients with severe degeneration who undergo spinal dynamic stabilisation should remain mindful of the risk of accelerated adjacent segment degeneration.

2.
Materials (Basel) ; 12(3)2019 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-30754634

RESUMO

Temperature history and hardening depth are experimentally characterized in the rotational laser hardening process for an AISI 1045 medium carbon steel specimen. A three-dimensional finite element model is proposed to predict the temperature field distribution and hardening zone area. The laser temperature field is set up for an average distribution and scanned along a circular path. Linear motion also takes place alongside rotation. The prediction of hardening area can be increased by increasing the rotational radius, which in turn raises the processing efficiency. A good agreement is found between the experimental characterized hardness value and metallographic composition. The uniformity of the hardening area decreases with increasing laser scanning speed. The increased laser power input could help to expand the hardening depth.

3.
Micromachines (Basel) ; 7(9)2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30404326

RESUMO

In this study, Nb2O5 ceramic was used as the target to deposit the Nb2O5 thin films on glass substrates with the radio frequency (RF) magnetron sputtering method. Different deposition temperatures and O2 ratios were used as parameters to investigate the optical properties of Nb2O5 thin films. The deposition parameters were a pressure of 5 × 10-3 Torr, a deposition power of 100 W, a deposition time of 30 min, an O2 ratio (O2/(O2 + Ar), in sccm) of 10% and 20%, and deposition temperatures of room temperature (RT), 200, 300 and 400 °C, respectively. We found that even if the deposition temperature was 400 °C, the deposited Nb2O5 thin films revealed an amorphous phase and no crystallization phase was observed. The optical properties of transmittance of Nb2O5 thin films deposited on glass substrates were determined by using a ultraviolet-visible (UV-vis) spectrophotometer (transmittance) and reflectance spectra transmittance (reflectance, refractive index, and extinction coefficient) in the light wavelength range of 250⁻1000 nm. When the O2 ratio was 10% and the deposition temperature increased from RT to 200 °C, the red-shift was clearly observed in the transmittance curve and the transmission ratio had no apparent change with the increasing deposition temperature. When the O2 ratio was 20%, the red-shift was not observed in the transmittance curve and the transmission ratio apparently decreased with the increasing deposition temperature. The variations in the optical band gap (Eg) values of Nb2O5 thin films were evaluated from the Tauc plot by using the quantity hν (the photon energy) on the abscissa and the quantity (αhν)r on the ordinate, where α is the optical absorption coefficient, c is the constant for direct transition, h is Planck's constant, ν is the frequency of the incident photon, and the exponent r denotes the nature of the transition. As the O2 ratio of 10% or 20% was used as the deposition atmosphere, the measured Eg values decreased with the increase of the deposition temperature. The reflectance ratio, extinction coefficient, and refractive index curves of Nb2O5 thin films were also investigated in this study. We would show that those results were influenced by the deposition temperature and O2 ratio.

4.
Nanomaterials (Basel) ; 6(5)2016 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-28335216

RESUMO

In this study, Ga2O3-doped ZnO (GZO) thin films were deposited on glass and flexible polyimide (PI) substrates at room temperature (300 K), 373 K, and 473 K by the radio frequency (RF) magnetron sputtering method. After finding the deposition rate, all the GZO thin films with a nano-scale thickness of about 150 ± 10 nm were controlled by the deposition time. X-ray diffraction patterns indicated that the GZO thin films were not amorphous and all exhibited the (002) peak, and field emission scanning electron microscopy showed that only nano-scale particles were observed. The dependences of the structural, electrical, and optical properties of the GZO thin films on different deposition temperatures and substrates were investigated. X-ray photoemission spectroscopy (XPS) was used to measure the elemental composition at the chemical and electronic states of the GZO thin films deposited on different substrates, which could be used to clarify the mechanism of difference in electrical properties of the GZO thin films. In this study, the XPS binding energy spectra of Ga2p3/2 and Ga2p1/2 peaks, Zn2p3/2 and Zn2p1/2 peaks, the Ga3d peak, and O1s peaks for GZO thin films on glass and PI substrates were well compared.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa