Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 17(7)2017 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-28671600

RESUMO

We propose two approaches-hot-embossing and dielectric-heating nanoimprinting methods-for low-cost and rapid fabrication of periodic nanostructures. Each nanofabrication process for the imprinted plastic nanostructures is completed within several seconds without the use of release agents and epoxy. Low-cost, large-area, and highly sensitive aluminum nanostructures on A4 size plastic films are fabricated by evaporating aluminum film on hot-embossing nanostructures. The narrowest bandwidth of the Fano resonance is only 2.7 nm in the visible light region. The periodic aluminum nanostructure achieves a figure of merit of 150, and an intensity sensitivity of 29,345%/RIU (refractive index unit). The rapid fabrication is also achieved by using radio-frequency (RF) sensitive plastic films and a commercial RF welding machine. The dielectric-heating, using RF power, takes advantage of the rapid heating/cooling process and lower electric power consumption. The fabricated capped aluminum nanoslit array has a 5 nm Fano linewidth and 490.46 nm/RIU wavelength sensitivity. The biosensing capabilities of the metallic nanostructures are further verified by measuring antigen-antibody interactions using bovine serum albumin (BSA) and anti-BSA. These rapid and high-throughput fabrication methods can benefit low-cost, highly sensitive biosensors and other sensing applications.


Assuntos
Nanoestruturas , Técnicas Biossensoriais , Ouro , Calefação , Ressonância de Plasmônio de Superfície
2.
Sci Rep ; 7: 44104, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28272519

RESUMO

Metallic nanostructure-based surface plasmon sensors are capable of real-time, label-free, and multiplexed detections for chemical and biomedical applications. Recently, the studies of aluminum-based biosensors have attracted a large attention because aluminum is a more cost-effective metal and relatively stable. However, the intrinsic properties of aluminum, having a large imaginary part of the dielectric function and a longer evanescent length, limit its sensing capability. Here we show that capped aluminum nanoslits fabricated on plastic films using hot embossing lithography can provide tailorable Fano resonances. Changing height of nanostructures and deposited metal film thickness modulated the transmission spectrum, which varied from Wood's anomaly-dominant resonance, asymmetric Fano profile to surface plasmon-dominant resonance. For biolayer detections, the maximum surface sensitivity occurred at the dip of asymmetric Fano profile. The optimal Fano factor was close to -1.3. The wavelength and intensity sensitivities for surface thickness were up to 2.58 nm/nm and 90%/nm, respectively. The limit of detection (LOD) of thickness reached 0.018 nm. We attributed the enhanced surface sensitivity for capped aluminum nanoslits to a reduced evanescent length and sharp slope of the asymmetric Fano profile. The protein-protein interaction experiments verified the high sensitivity of capped nanostructures. The LOD was down to 236 fg/mL.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa