Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
J Neurosci ; 43(4): 635-646, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36639896

RESUMO

Transcranial direct current stimulation (tDCS) is a promising noninvasive neuromodulatory treatment option for multiple neurologic and psychiatric disorders, but its mechanism of action is still poorly understood. Adult hippocampal neurogenesis (AHN) continues throughout life and is crucial for preserving several aspects of hippocampal-dependent cognitive functions. Nevertheless, the contribution of AHN in the neuromodulatory effects of tDCS remains unexplored. Here, we sought to investigate whether multisession anodal tDCS may modulate AHN and its associated cognitive functions. Multisession anodal tDCS were applied on the skull over the hippocampus of adult male mice for 20 min at 0.25 mA once daily for 10 d totally. We found that multisession anodal tDCS enhances AHN by increasing the proliferation, differentiation and survival of neural stem/progenitor cells (NSPCs). In addition, tDCS treatment increased cell cycle reentry and reduced cell cycle exit of NSPCs. The tDCS-treated mice exhibited a reduced GABAergic inhibitory tone in the dentate gyrus compared with sham-treated mice. The effect of tDCS on the proliferation of NSPCs was blocked by pharmacological restoration of GABAB receptor-mediated inhibition. Functionally, multisession anodal tDCS enhances performance on a contextual fear discrimination task, and this enhancement was prevented by blocking AHN using the DNA alkylating agent temozolomide (TMZ). Our results emphasize an important role for AHN in mediating the beneficial effects of tDCS on cognitive functions that substantially broadens the mechanistic understanding of tDCS beyond its well-described in hippocampal synaptic plasticity.SIGNIFICANCE STATEMENT Transcranial direct current stimulation (tDCS) has been shown to effectively enhance cognitive functions in healthy and pathologic conditions. However, the mechanisms underlying its effects are largely unknown and need to be better understood to enable its optimal clinical use. This study shows that multisession anodal tDCS enhances adult hippocampal neurogenesis (AHN) and therefore contributes to enhance context discrimination in mice. Our results also show that the effect of tDCS on AHN is associated with reduced GABAergic inhibition in the dentate gyrus. Our study uncovers a novel mechanism of anodal tDCS to elicit cognitive-enhancing effects and may have the potential to improve cognitive decline associated with normal aging and neurodegenerative disorders.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Masculino , Camundongos , Animais , Estimulação Transcraniana por Corrente Contínua/métodos , Hipocampo , Plasticidade Neuronal/fisiologia , Cognição , Neurogênese
2.
J Biomed Sci ; 31(1): 46, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38725007

RESUMO

BACKGROUND: Cathepsin S (CTSS) is a cysteine protease that played diverse roles in immunity, tumor metastasis, aging and other pathological alterations. At the cellular level, increased CTSS levels have been associated with the secretion of pro-inflammatory cytokines and disrupted the homeostasis of Ca2+ flux. Once CTSS was suppressed, elevated levels of anti-inflammatory cytokines and changes of Ca2+ influx were observed. These findings have inspired us to explore the potential role of CTSS on cognitive functions. METHODS: We conducted classic Y-maze and Barnes Maze tests to assess the spatial and working memory of Ctss-/- mice, Ctss+/+ mice and Ctss+/+ mice injected with the CTSS inhibitor (RJW-58). Ex vivo analyses including long-term potentiation (LTP), Golgi staining, immunofluorescence staining of sectioned whole brain tissues obtained from experimental animals were conducted. Furthermore, molecular studies were carried out using cultured HT-22 cell line and primary cortical neurons that treated with RJW-58 to comprehensively assess the gene and protein expressions. RESULTS: Our findings reported that targeting cathepsin S (CTSS) yields improvements in cognitive function, enhancing both working and spatial memory in behavior models. Ex vivo studies showed elevated levels of long-term potentiation levels and increased synaptic complexity. Microarray analysis demonstrated that brain-derived neurotrophic factor (BDNF) was upregulated when CTSS was knocked down by using siRNA. Moreover, the pharmacological blockade of the CTSS enzymatic activity promoted BDNF expression in a dose- and time-dependent manner. Notably, the inhibition of CTSS was associated with increased neurogenesis in the murine dentate gyrus. These results suggested a promising role of CTSS modulation in cognitive enhancement and neurogenesis. CONCLUSION: Our findings suggest a critical role of CTSS in the regulation of cognitive function by modulating the Ca2+ influx, leading to enhanced activation of the BDNF/TrkB axis. Our study may provide a novel strategy for improving cognitive function by targeting CTSS.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Catepsinas , Cognição , Animais , Masculino , Camundongos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Catepsinas/efeitos dos fármacos , Catepsinas/genética , Catepsinas/metabolismo , Cognição/efeitos dos fármacos , Cognição/fisiologia , Camundongos Knockout , Receptor trkB/metabolismo , Receptor trkB/genética , Transativadores/genética , Transativadores/metabolismo
3.
J Neurosci ; 42(5): 877-893, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-34876468

RESUMO

The retrieval of recent and remote memories are thought to rely on distinct brain circuits and mechanisms. The retrosplenial cortex (RSC) is robustly activated during the retrieval of remotely acquired contextual fear memories (CFMs), but the contribution of particular subdivisions [granular (RSG) vs agranular retrosplenial area (RSA)] and the circuit mechanisms through which they interact to retrieve remote memories remain unexplored. In this study, using both anterograde and retrograde viral tracing approaches, we identified excitatory projections from layer 5 pyramidal neurons of the RSG to the CA1 stratum radiatum/lacunosum-moleculare of the dorsal hippocampus and the superficial layers of the RSA in male mice. We found that chemogenetic or optogenetic inhibition of the RSG-to-CA1, but not the RSG-to-RSA, pathway selectively impairs the retrieval of remote CFMs. Collectively, our results uncover a specific role for the RSG in remote CFM recall and provide circuit evidence that RSG-mediated remote CFM retrieval relies on direct RSG-to-CA1 connectivity. The present study provides a better understanding of brain circuit mechanisms underlying the retrieval of remote CFMs and may help guide the development of therapeutic strategies to attenuate remote traumatic memories that lead to mental health issues such as post-traumatic stress disorder.SIGNIFICANCE STATEMENT The RSC is implicated in contextual information processing and remote recall. However, how different subdivisions of the RSC and circuit mechanisms through which they interact to underlie remote memory recall remain unexplored. This study shows that granular subdivision of the RSC and its input to hippocampal area CA1 contributes to the retrieval of remote contextual fear memories. Our results support the hypothesis that the RSC and hippocampus require each other to preserve fear memories and may provide a novel therapeutic avenue to attenuate remote traumatic memories in patients with post-traumatic stress disorder.


Assuntos
Medo , Giro do Cíngulo/fisiologia , Rememoração Mental , Células Piramidais/fisiologia , Animais , Giro do Cíngulo/citologia , Hipocampo/citologia , Hipocampo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
4.
Neurobiol Dis ; 187: 106311, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37769745

RESUMO

Hippocampal oxytocin receptor (OXTR) signaling is crucial for discrimination of social stimuli to guide social recognition, but circuit mechanisms and cell types involved remain incompletely understood. Here, we report a role for OXTR-expressing hilar mossy cells (MCs) of the dentate gyrus in social stimulus discrimination by regulating granule cell (GC) activity. Using a Cre-loxP recombination approach, we found that ablation of Oxtr from MCs impairs discrimination of social, but not object, stimuli in adult male mice. Ablation of MC Oxtr increases spontaneous firing rate of GCs, synaptic excitation to inhibition ratio of MC-to-GC circuit, and GC firing when temporally associated with the lateral perforant path inputs. Using mouse hippocampal slices, we found that bath application of OXTR agonist [Thr4,Gly7]-oxytocin causes membrane depolarization and increases MC firing activity. Optogenetic activation of MC-to-GC circuit ameliorates social discrimination deficit in MC OXTR deficient mice. Together, our results uncover a previously unknown role of MC OXTR signaling for discrimination of social stimuli and delineate a MC-to-GC circuit responsible for social information processing.

5.
J Neurosci ; 41(6): 1317-1330, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33310752

RESUMO

In social animals, the behavioral and hormonal responses to stress can be transmitted from one individual to another through a social transmission process, and, conversely, social support ameliorates stress responses, a phenomenon referred to as social buffering. Metaplasticity represents activity-dependent synaptic changes that modulate the ability to elicit subsequent synaptic plasticity. Authentic stress can induce hippocampal metaplasticity, but whether transmitted stress has the same ability remains unknown. Here, using an acute restraint-tailshock stress paradigm, we report that both authentic and transmitted stress in adult male mice trigger metaplastic facilitation of long-term depression (LTD) induction at hippocampal CA1 synapses. Using LTD as a readout of persistent synaptic consequences of stress, our findings demonstrate that, in a male-male dyad, stress transmission happens in nearly half of naive partners and stress buffering occurs in approximately half of male stressed mice that closely interact with naive partners. By using a social-confrontation tube test to assess the dominant-subordinate relationship in a male-male dyad, we found that stressed subordinate mice are not buffered by naive dominant partners and that stress transmission is exhibited in ∼60% of dominant naive partners. Furthermore, the appearance of stress transmission correlates with more time spent in sniffing the anogenital area of stressed mice, and the appearance of stress buffering correlates with more time engaged in allogrooming from naive partners. Chemical ablation of the olfactory epithelium with dichlobenil or physical separation between social contacts diminishes stress transmission. Together, our data demonstrate that transmitted stress can elicit metaplastic facilitation of LTD induction as authentic stress.SIGNIFICANCE STATEMENT Social animals can acquire information about their environment through interactions with conspecifics. Stress can induce enduring changes in neural activity and synaptic function. Current studies are already unraveling the transmission and buffering of stress responses between individuals, but little is known about the relevant synaptic changes associated with social transmission and buffering of stress. Here, we show that authentic and transmitted stress can prime glutamatergic synapses onto hippocampal CA1 neurons to undergo long-term depression. This hippocampal metaplasticity is bufferable following social interactions with naive partners. Hierarchical status of naive partners strongly affects the social buffering effect on synaptic consequences of stress. This work provides novel insights into the conceptual framework for synaptic changes with social transmission and buffering of stress.


Assuntos
Hipocampo/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Plasticidade Neuronal/fisiologia , Interação Social , Estresse Psicológico/psicologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Cultura de Órgãos , Distribuição Aleatória , Estresse Psicológico/fisiopatologia
6.
J Neuroinflammation ; 19(1): 29, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35109859

RESUMO

BACKGROUND: Systemic inflammation is a potent contributor to increased seizure susceptibility. However, information regarding the effects of systemic inflammation on cerebral vascular integrity that influence neuron excitability is scarce. Necroptosis is closely associated with inflammation in various neurological diseases. In this study, necroptosis was hypothesized to be involved in the mechanism underlying sepsis-associated neuronal excitability in the cerebrovascular components (e.g., endothelia cells). METHODS: Lipopolysaccharide (LPS) was used to induce systemic inflammation. Kainic acid intraperitoneal injection was used to measure the susceptibility of the mice to seizure. The pharmacological inhibitors C87 and GSK872 were used to block the signaling of TNFα receptors and necroptosis. In order to determine the features of the sepsis-associated response in the cerebral vasculature and CNS, brain tissues of mice were obtained for assays of the necroptosis-related protein expression, and for immunofluorescence staining to identify morphological changes in the endothelia and glia. In addition, microdialysis assay was used to assess the changes in extracellular potassium and glutamate levels in the brain. RESULTS: Some noteworthy findings, such as increased seizure susceptibility and brain endothelial necroptosis, Kir4.1 dysfunction, and microglia activation were observed in mice following LPS injection. C87 treatment, a TNFα receptor inhibitor, showed considerable attenuation of increased kainic acid-induced seizure susceptibility, endothelial cell necroptosis, microglia activation and restoration of Kir4.1 protein expression in LPS-treated mice. Treatment with GSK872, a RIP3 inhibitor, such as C87, showed similar effects on these changes following LPS injection. CONCLUSIONS: The findings of this study showed that TNFα-mediated necroptosis induced cerebrovascular endothelial damage, neuroinflammation and astrocyte Kir4.1 dysregulation, which may coalesce to contribute to the increased seizure susceptibility in LPS-treated mice. Pharmacologic inhibition targeting this necroptosis pathway may provide a promising therapeutic approach to the reduction of sepsis-associated brain endothelia cell injury, astrocyte ion channel dysfunction, and subsequent neuronal excitability.


Assuntos
Necroptose , Fator de Necrose Tumoral alfa , Animais , Encéfalo/metabolismo , Células Endoteliais/metabolismo , Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , Camundongos , Convulsões/induzido quimicamente , Fator de Necrose Tumoral alfa/metabolismo
7.
J Biomed Sci ; 29(1): 50, 2022 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-35811321

RESUMO

BACKGROUND: Social recognition memory (SRM) is the ability to distinguish familiar from novel conspecifics and is crucial for survival and reproductive success across social species. We previously reported that oxytocin (OXT) receptor (OXTR) signaling in the CA2/CA3a of dorsal hippocampus is essential to promote the persistence of long-term SRM, yet how the endogenous OXT system influences CA2 outputs to regulate long-term SRM formation remains unclear. METHODS: To achieve a selective deletion of CA2 OXTRs, we crossed Amigo2-Cre mice with Oxtr-floxed mice to generate CA2-specific Oxtr conditional knockout (Oxtr-/-) mice. A three-chamber paradigm test was used for studying SRM in mice. Chemogenetic and optogenetic targeting strategies were employed to manipulate neuronal activity. RESULTS: We show that selective ablation of Oxtr in the CA2 suffices to impair the persistence of long-term SRM but has no effect on sociability and social novelty preference in the three-chamber paradigm test. We find that cell-type specific activation of OXT neurons within the hypothalamic paraventricular nucleus enhances long-term SRM and this enhancement is blocked by local application of OXTR antagonist L-368,899 into dorsal hippocampal CA2 (dCA2) region. In addition, chemogenetic neuronal silencing in dCA2 demonstrated that neuronal activity is essential for forming long-term SRM. Moreover, chemogenetic terminal-specific inactivation reveals a crucial role for dCA2 outputs to ventral CA1 (vCA1), but not dorsal lateral septum, in long-term SRM. Finally, targeted activation of the dCA2-to-vCA1 circuit effectively ameliorates long-term SRM deficit observed in Oxtr-/- mice. CONCLUSIONS: These findings highlight the importance of hippocampal CA2 OXTR signaling in governing the persistence of long-term SRM and identify a hippocampal circuit linking dCA2 to vCA1 necessary for controlling long-term SRM formation.


Assuntos
Receptores de Ocitocina , Reconhecimento Psicológico , Animais , Hipocampo/metabolismo , Memória de Longo Prazo , Camundongos , Neurônios/fisiologia , Receptores de Ocitocina/genética , Receptores de Ocitocina/metabolismo , Reconhecimento Psicológico/fisiologia
8.
J Neurosci ; 39(25): 4959-4975, 2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-30992372

RESUMO

Coiled-coil and C2 domain containing 1A (CC2D1A) is an evolutionarily conserved protein, originally identified as a nuclear factor-κB activator through a large-scale screen of human genes. Mutations in the human Cc2d1a gene result in autosomal recessive nonsyndromic intellectual disability. It remains unclear, however, how Cc2d1a mutation leads to alterations in brain function. Here, we have taken advantage of Cre/loxP recombinase-based strategy to conditionally delete Cc2d1a exclusively from excitatory neurons of male mouse forebrain to examine its role in hippocampal synaptic plasticity and cognitive function. We confirmed the expression of CC2D1A protein and mRNA in the mouse hippocampus. Double immunofluorescence staining showed that CC2D1A is expressed in both excitatory and inhibitory neurons of the adult hippocampus. Conditional deletion of Cc2d1a (cKO) from excitatory neurons leads to impaired performance in object location memory test and altered anxiety-like behavior. Consistently, cKO mice displayed a deficit in the maintenance of LTP in the CA1 region of hippocampal slices. Cc2d1a deletion also resulted in decreased complexity of apical and basal dendritic arbors of CA1 pyramidal neurons. An enhanced basal Rac1 activity was observed following Cc2d1a deletion, and this enhancement was mediated by reduced SUMO-specific protease 1 (SENP1) and SENP3 expression, thus increasing the amount of Rac1 SUMOylation. Furthermore, partial blockade of Rac1 activity rescued impairments in LTP and object location memory performance in cKO mice. Together, our results implicate Rac1 hyperactivity in synaptic plasticity and cognitive deficits observed in Cc2d1a cKO mice and reveal a novel role for CC2D1A in regulating hippocampal synaptic function.SIGNIFICANCE STATEMENT CC2D1A is abundantly expressed in the brain, but there is little known about its physiological function. Taking advantage of Cc2d1a cKO mice, the present study highlights the importance of CC2D1A in the maintenance of LTP at Schaffer collateral-CA1 synapses and the formation of hippocampus-dependent long-term object location memory. Our findings establish a critical link between elevated Rac1 activity, structural and synaptic plasticity alterations, and cognitive impairment caused by Cc2d1a deletion. Moreover, partial blockade of Rac1 activity rescues synaptic plasticity and memory deficits in Cc2d1a cKO mice. Such insights may have implications for the utility of Rac1 inhibitors in the treatment of intellectual disability caused by Cc2d1a mutations in human patients.


Assuntos
Cognição/fisiologia , Hipocampo/metabolismo , Plasticidade Neuronal/fisiologia , Proteínas Repressoras/genética , Memória Espacial/fisiologia , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Proteínas Repressoras/metabolismo
9.
Brain Behav Immun ; 84: 242-252, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31841660

RESUMO

BACKGROUND: Research indicates that sepsis increases the risk of developing cognitive impairment. After systemic inflammation, a corresponding activation of microglia is rapidly induced in the brain, and multiple neurotoxic factors, including inflammatory mediators (e.g., cytokines) and reactive oxygen species (e.g., superoxide), are also released that contribute to neuronal injury. NADPH oxidase (NOX) enzymes play a vital role in microglial activation through the generation of superoxide anions. We hypothesized that NOX isoforms, particularly NOX2, could exhibit remarkable abilities in developing cognitive deficits induced by systemic inflammation. METHODS: Mice with deficits of NOX2 organizer p47phox (p47phox-/-) and wild-type (WT) mice treated with the NOX inhibitor diphenyleneiodonium (DPI) were used in this study. Intraperitoneal lipopolysaccharide (LPS) injection was used to induce systemic inflammation. Spatial learning and memory were compared among treatment groups using the radial arm maze task. Brain tissues were collected for evaluating the transcript levels of proinflammatory cytokines, whereas immunofluorescence staining and immunoblotting were conducted to determine the percentage of activated glia (microglia and astroglia) and damaged neurons and the expression of synaptic proteins and BDNF. RESULTS: Cognitive impairment induced by systemic inflammation was significantly attenuated in the p47phox-/- mice compared to that in the WT mice. The p47phox-/- mice exhibited reduced microglial and astroglial activation and neuronal damage and attenuated the induction of multiple proinflammatory cytokines, including tumor necrosis factor-α, interleukin (IL)-1ß, IL-6, and CCL2. Similar to that observed in the p47phox-/- mice, the administration of DPI significantly attenuated the cognitive impairment, reduced the glial activation and brain cytokine concentrations, and restored the expression of postsynaptic proteins (PSD-95) and BDNF in neurons and astrocytes, compared to those in the vehicle-treated controls within 10 days after LPS injection. CONCLUSIONS: This study clearly demonstrates that NOX2 contributes to glial activation with subsequent reduction in the expression of BDNF, synaptic dysfunction, and cognitive deficits after systemic inflammation in an LPS-injected mouse model. Our results provide evidence that NOX2 might be a promising pharmacological target that could be used to protect against synaptic dysregulation and cognitive impairment following systemic inflammation.


Assuntos
Disfunção Cognitiva , Inflamação , NADPH Oxidase 2 , Oniocompostos , Animais , Doença Crônica , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Inflamação/complicações , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/patologia , NADPH Oxidase 2/metabolismo , Oniocompostos/farmacologia , Oniocompostos/uso terapêutico , Espécies Reativas de Oxigênio
10.
J Neurosci ; 38(5): 1218-1231, 2018 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-29279308

RESUMO

Oxytocin (OXT) receptors (OXTRs) are prominently expressed in hippocampal CA2 and CA3 pyramidal neurons, but little is known about its physiological function. As the functional necessity of hippocampal CA2 for social memory processing, we tested whether CA2 OXTRs may contribute to long-term social recognition memory (SRM) formation. Here, we found that conditional deletion of Oxtr from forebrain (Oxtr-/-) or CA2/CA3a-restricted excitatory neurons in adult male mice impaired the persistence of long-term SRM but had no effect on sociability and preference for social novelty. Conditional deletion of CA2/CA3a Oxtr showed no changes in anxiety-like behavior assessed using the open-field, elevated plus maze and novelty-suppressed feeding tests. Application of a highly selective OXTR agonist [Thr4,Gly7]-OXT to hippocampal slices resulted in an acute and lasting potentiation of excitatory synaptic responses in CA2 pyramidal neurons that relied on N-methyl-d-aspartate receptor activation and calcium/calmodulin-dependent protein kinase II activity. In addition, Oxtr-/- mice displayed a defect in the induction of long-term potentiation, but not long-term depression, at the synapses between the entorhinal cortex and CA2 pyramidal neurons. Furthermore, Oxtr deletion led to a reduced complexity of basal dendritic arbors of CA2 pyramidal neurons, but caused no alteration in the density of apical dendritic spines. Considering that the methodologies we have used to delete Oxtr do not rule out targeting the neighboring CA3a region, these findings suggest that OXTR signaling in the CA2/CA3a is crucial for the persistence of long-term SRM.SIGNIFICANCE STATEMENT Oxytocin receptors (OXTRs) are abundantly expressed in hippocampal CA2 and CA3 regions, but there are little known about their physiological function. Taking advantage of the conditional Oxtr knock-out mice, the present study highlights the importance of OXTR signaling in the induction of long-term potentiation at the synapses between the entorhinal cortex and CA2 pyramidal neurons and the persistence of long-term social recognition memory. Thus, OXTRs in the CA2/CA3a may provide a new target for therapeutic approaches to the treatment of social cognition deficits, which are often observed in patients with neuropsychiatric disorders.


Assuntos
Região CA2 Hipocampal/fisiologia , Região CA3 Hipocampal/fisiologia , Receptores de Ocitocina/genética , Receptores de Ocitocina/fisiologia , Reconhecimento Psicológico/fisiologia , Comportamento Social , Animais , Região CA2 Hipocampal/citologia , Região CA2 Hipocampal/metabolismo , Região CA3 Hipocampal/citologia , Região CA3 Hipocampal/metabolismo , Dendritos/efeitos dos fármacos , Dendritos/ultraestrutura , Córtex Entorrinal/citologia , Córtex Entorrinal/metabolismo , Córtex Entorrinal/fisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Deleção de Genes , Potenciação de Longa Duração/genética , Masculino , Memória de Curto Prazo/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/fisiologia , Ocitocina/análogos & derivados , Ocitocina/farmacologia , Células Piramidais/efeitos dos fármacos , Células Piramidais/ultraestrutura , Receptores de N-Metil-D-Aspartato/agonistas , Receptores de Ocitocina/agonistas
11.
J Neuroinflammation ; 15(1): 140, 2018 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-29753328

RESUMO

BACKGROUND: Systemic inflammation associated with sepsis can induce neuronal hyperexcitability, leading to enhanced seizure predisposition and occurrence. Brain microglia are rapidly activated in response to systemic inflammation and, in this activated state, release multiple cytokines and signaling factors that amplify the inflammatory response and increase neuronal excitability. NADPH oxidase (NOX) enzymes promote microglial activation through the generation of reactive oxygen species (ROS), such as superoxide anion. We hypothesized that NOX isoforms, particularly NOX2, are potential targets for prevention of sepsis-associated seizures. METHODS: To reduce NADPH oxidase 2-derived ROS production, mice with deficits of NOX regulatory subunit/NOX2 organizer p47phox (p47phox-/-) or NOX2 major subunit gp91phox (gp91phox-/-) were used or the NOX2-selective inhibitor diphenyleneiodonium (DPI) was used to treat wild-type (WT) mice. Systemic inflammation was induced by intraperitoneal injection of lipopolysaccharide (LPS). Seizure susceptibility was compared among mouse groups in response to intraperitoneal injection of pentylenetetrazole (PTZ). Brain tissues were assayed for proinflammatory gene and protein expression, and immunofluorescence staining was used to estimate the proportion of activated microglia. RESULTS: Increased susceptibility to PTZ-induced seizures following sepsis was significantly attenuated in gp91phox-/- and p47phox-/- mice compared with WT mice. Both gp91phox-/- and p47phox-/- mice exhibited reduced microglia activation and lower brain induction of multiple proconvulsive cytokines, including TNFα, IL-1ß, IL-6, and CCL2, compared with WT mice. Administration of DPI following LPS injection significantly attenuated the increased susceptibility to PTZ-induced seizures and reduced both microglia activation and brain proconvulsive cytokine concentrations compared with vehicle-treated controls. DPI also inhibited the upregulation of gp91phox transcripts following LPS injection. CONCLUSIONS: Our results indicate that NADPH oxidases contribute to the development of increased seizure susceptibility in mice after sepsis. Pharmacologic inhibition of NOX may be a promising therapeutic approach to reducing sepsis-associated neuroinflammation, neuronal hyperexcitability, and seizures.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/metabolismo , Convulsões/enzimologia , Convulsões/prevenção & controle , Sepse/enzimologia , Animais , Células Cultivadas , Inibidores Enzimáticos/administração & dosagem , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/enzimologia , Lipopolissacarídeos/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADPH Oxidase 2/antagonistas & inibidores , NADPH Oxidase 2/metabolismo , Pentilenotetrazol/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Convulsões/induzido quimicamente , Sepse/induzido quimicamente , Sepse/tratamento farmacológico
12.
Anesthesiology ; 125(4): 779-92, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27428822

RESUMO

BACKGROUND: The anterior cingulate cortex (ACC) is a brain region that has been critically implicated in the processing of pain perception and modulation. While much evidence has pointed to an increased activity of the ACC under chronic pain states, less is known about whether pain can be alleviated by inhibiting ACC neuronal activity. METHODS: The authors used pharmacologic, chemogenetic, and optogenetic approaches in concert with viral tracing technique to address this issue in a mouse model of bone cancer-induced mechanical hypersensitivity by intratibia implantation of osteolytic fibrosarcoma cells. RESULTS: Bilateral intra-ACC microinjections of γ-aminobutyric acid receptor type A receptor agonist muscimol decreased mechanical hypersensitivity in tumor-bearing mice (n =10). Using adenoviral-mediated expression of engineered Gi/o-coupled human M4 (hM4Di) receptors, we observed that activation of Gi/o-coupled human M4 receptors with clozapine-N-oxide reduced ACC neuronal activity and mechanical hypersensitivity in tumor-bearing mice (n = 11). In addition, unilateral optogenetic silencing of ACC excitatory neurons with halorhodopsin significantly decreased mechanical hypersensitivity in tumor-bearing mice (n = 4 to 9), and conversely, optogenetic activation of these neurons with channelrhodopsin-2 was sufficient to provoke mechanical hypersensitivity in sham-operated mice (n = 5 to 9). Furthermore, we found that excitatory neurons in the ACC send direct descending projections to the contralateral dorsal horn of the lumbar spinal cord via the dorsal corticospinal tract. CONCLUSIONS: The findings of this study indicate that enhanced neuronal activity in the ACC contributes to maintain bone cancer-induced mechanical hypersensitivity and suggest that the ACC may serve as a potential therapeutic target for treating bone cancer pain.


Assuntos
Neoplasias Ósseas/complicações , Giro do Cíngulo/metabolismo , Hiperalgesia/etiologia , Hiperalgesia/prevenção & controle , Neuralgia/prevenção & controle , Neurônios/metabolismo , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C3H , Muscimol
13.
Int J Neuropsychopharmacol ; 19(3): pyv097, 2015 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-26346341

RESUMO

BACKGROUND: Chronic stress has been found to suppress adult neurogenesis, but it remains unclear whether it may affect the maturation process of adult-born neurons. Here, we examined the influence of chronic social defeat stress on the morphological and electrophysiological properties of adult-born dentate granule cells at different developmental stages. METHODS: Adult C57BL/6 mice were subjected to 10 days of chronic social defeat stress followed by a social interaction test 24 hours after the last defeat. Defeated mice were segregated into susceptible and unsusceptible subpopulations based on a measure of social interaction test. Combining electrophysiology with retrovirus-mediated birth-dating and labeling, we examined the impact of chronic social defeat stress on temporal regulation of synaptic plasticity of adult-born dentate granule cells along their maturation. RESULTS: Chronic social defeat stress decreases the survival and dendritic complexity of adult-born dentate granule cells. While chronic social defeat stress doesn't alter the intrinsic electrophysiological properties and synaptic transmission of surviving adult-born dentate granule cells, it promotes the developmental switch in synaptic N-methyl-D-aspartate receptors from predominant GluN2B- to GluN2A-containing receptors, which transform the immature synapse of adult-born dentate granule cells from one that exhibits enhanced long-term potentiation to one that has normal levels of long-term potentiation. Furthermore, chronic social defeat stress increases the level of endogenous repressor element-1 silencing transcription factor mRNA in adult-born dentate granule cells, and knockdown of the repressor element-1 silencing transcription factor in adult-born dentate granule cells rescues chronic social defeat stress-induced morphological deficits and accelerated developmental switch in synaptic N-methyl-D-aspartate receptor subunit composition. CONCLUSIONS: These results uncover a previously unsuspected role of chronic social defeat stress in regulating adult neurogenesis and suggest that chronic social defeat stress can affect synaptic maturation process of adult-born dentate granule cells.


Assuntos
Giro Denteado/fisiopatologia , Neurogênese/fisiologia , Plasticidade Neuronal/fisiologia , Estresse Psicológico/fisiopatologia , Sinapses/fisiologia , Animais , Contagem de Células , Sobrevivência Celular , Doença Crônica , Giro Denteado/patologia , Modelos Animais de Doenças , Dominação-Subordinação , Técnicas de Silenciamento de Genes , Individualidade , Masculino , Camundongos Endogâmicos C57BL , Técnicas de Patch-Clamp , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Comportamento Social , Estresse Psicológico/patologia , Sinapses/patologia , Técnicas de Cultura de Tecidos
14.
BMC Neurosci ; 15: 26, 2014 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-24533597

RESUMO

BACKGROUND: Epidermal growth factor receptor substrate 8 (Eps8) is a multifunctional protein that regulates actin cytoskeleton dynamics and architecture through its barbed-end capping and bundling activities. In cultured hippocampal neurons, Eps8 is enriched at dendritic spine heads and is required for spine morphogenesis; however, the detailed expression pattern of Eps8 in the hippocampus has not yet been explored. RESULTS: Here, we demonstrate that endogenous Eps8 protein is restrictively expressed in neurons (NeuN-positive), but not in glial cells (glial fibrillary acidic protein-positive) in area CA1 of the mouse hippocampus. Surprisingly, Eps8 immunoreactivity is rarely found in pyramidal cell somata, but is expressed predominantly in the somata and dendrites of 67 kDa isoform of glutamic acid decarboxylase-expressing GABAergic interneurons in the stratum radiatum and at the border of stratum radiatum and lacunosum-moleculare of area CA1. On the basis of co-localizing markers, we found that Eps8 is not present in perisomatic inhibitory parvalbumin-expressing cells or calretinin-expressing interneurons. However, Eps8 is richly expressed in calbindin-expressing interneurons. Furthermore, Eps8 is also present in cholecystokinin-expressing interneurons, but not in somatostatin-expressing interneurons in area CA1 stratum pyramidale and stratum radiatum. CONCLUSIONS: These results reveal a previously unknown cell type-specific expression pattern of endogenous Eps8 protein in the mouse hippocampus and speculate that the role of Eps8 in controlling and orchestrating neuronal morphogenesis and structural plasticity might be more prominent in interneurons than in pyramidal cells of the hippocampus.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Células Dendríticas/metabolismo , Hipocampo/citologia , Hipocampo/metabolismo , Interneurônios/metabolismo , Neuroglia/metabolismo , Animais , Células Cultivadas , Células Dendríticas/classificação , Interneurônios/classificação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuroglia/classificação , Distribuição Tecidual
15.
Int J Neuropsychopharmacol ; 17(8): 1233-42, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24556032

RESUMO

The intercalated cell masses (ITCs) of the amygdala are clusters of GABAergic interneurons that surround the basolateral complex of the amygdala. ITCs have been increasingly implicated in the acquisition and extinction of conditioned fear responses, but the underlying cellular mechanisms remain unexplored. Here, we report that repetitive stimulation of lateral amygdala (LA) afferents with a modified theta burst stimulation (TBS) protocol and induces long-term potentiation (LTP) of excitatory synapses onto medial paracapsular ITC (Imp) neurons. This TBS-induced LTP is; (1) induced and expressed post-synaptically, (2) involves a rise in post-synaptic Ca2+ and the activation of NR2B-containing N-methyl-D-aspartate receptors (NMDARs), (3) dependent on calcium/calmodulin-dependent protein kinase II and cAMP-dependent protein kinase activation, and (4) associated with increased exocytotic delivery of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) to the post-synaptic membrane. Remarkably, auditory fear conditioning led to a persistent increase in AMPAR/NMDAR ratio of glutamatergic synaptic currents and occluded TBS-induced LTP at LA-Imp synapses. Furthermore, extinction training rescued the effect of fear conditioning on AMPAR/NMDAR ratio and LTP induction. These results show that a prominent form of LTP can be elicited at LA-Imp synapses and suggest that this synaptic plasticity may contribute to the expression of fear conditioning.


Assuntos
Tonsila do Cerebelo/citologia , Tonsila do Cerebelo/fisiologia , Neurônios GABAérgicos/fisiologia , Interneurônios/fisiologia , Potenciação de Longa Duração/fisiologia , Sinapses/fisiologia , Potenciais de Ação/fisiologia , Tonsila do Cerebelo/metabolismo , Animais , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Condicionamento Clássico/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Estimulação Elétrica , Extinção Psicológica/fisiologia , Medo/fisiologia , Técnicas de Introdução de Genes , Glutamato Descarboxilase/genética , Masculino , Potenciais da Membrana/fisiologia , Camundongos , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/fisiologia , Sinapses/metabolismo
16.
Brain Cogn ; 91: 87-94, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25265321

RESUMO

Spatial working memory (SWM) is the ability to temporarily store and manipulate spatial information. It has a limited capacity and is quite vulnerable to interference. Dorsolateral prefrontal cortex (DLPFC) has been shown to be a part of the SWM network but its specific functional role still remains unknown. Here we applied transcranial direct current stimulation (tDCS), a noninvasive brain stimulation technique that provides polarity-specific stimulation over the targeted region, to investigate the specific role of the right DLPFC in resolving interference in SWM. A forward- and backward-recall computerized Corsi Block Tapping task (CBT), both with and without a concurrent motor interference task (the modified Luria manual sequencing task) was used to measure SWM capacity and reaction time. The results showed that motor interference impeded accuracy and prolonged reaction time in forward and backward recall for SWM. Anodal tDCS over right DLPFC yielded the tendency to shorten participants' reaction time in the conditions with interference (forward with interference, and backward with interference). Most importantly, anodal tDCS significantly improved participants' SWM span when cognitive demand was the highest (the "backward-recall with motor interference" condition). These results suggest that (1) the right DLPFC plays a crucial role in dealing with the cross-domain motor interference for spatial working memory and (2) the anodal tDCS over right DLPFC improved SWM capacity particularly when task difficulty demands more complex mental manipulations that could be due to the facilitatory effect of anodal tDCS which enhanced the DLPFC function within central executive system at the top-down attentional level.


Assuntos
Atenção/fisiologia , Memória de Curto Prazo/fisiologia , Córtex Pré-Frontal/fisiologia , Estimulação Transcraniana por Corrente Contínua , Estimulação Magnética Transcraniana , Adulto , Feminino , Humanos , Masculino , Rememoração Mental/fisiologia , Testes Neuropsicológicos , Tempo de Reação , Estimulação Transcraniana por Corrente Contínua/métodos , Estimulação Magnética Transcraniana/métodos , Adulto Jovem
17.
Artigo em Inglês | MEDLINE | ID: mdl-39014123

RESUMO

Irritability, a state of excessive reactivity to negative emotional stimuli, is common in individuals with autism spectrum disorder (ASD). Although it has a significant negative impact of patients' disease severity and quality of life, the neural mechanisms underlying irritability in ASD remain largely unclear. We have previously demonstrated that male mice lacking the Coiled-coil and C2 domain containing 1a (Cc2d1a) in forebrain excitatory neurons recapitulate numerous ASD-like behavioral phenotypes, including impaired social behaviors and pronounced repetitive behaviors. Here, using the bottle-brush test (BBT) to trigger and evaluate aggressive and defensive responses, we show that Cc2d1a deletion increases irritability-like behavior in male but not female mice, which is correlated with reduced number of oxytocin (OXT)-expressing neurons in the paraventricular nucleus (PVN) of the hypothalamus. Intranasal OXT administration or chemogenetic activation of OXT neurons in the PVN rescues irritability-like behavior in Cc2d1a conditional knockout (cKO) mice. Administration of a selective melanocortin receptor 4 agonist, RO27-3225, which potentiates endogenous OXT release, also alleviates irritability-like behavior in Cc2d1a cKO mice, an effect blocked by a specific OXT receptor antagonist, L-368,899. We additionally identify a projection connecting the posterior ventral segment of the medial amygdala (MeApv) and ventromedial nucleus of the ventromedial hypothalamus (VMHvl) for governing irritability-like behavior during the BBT. Chemogenetic suppression of the MeApv-VMHvl pathway alleviates irritability-like behavior in Cc2d1a cKO mice. Together, our study uncovers dysregulation of OXT system in irritability-like behavior in Cc2d1a cKO mice during the BBT and provide translatable insights into the development of OXT-based therapeutics for clinical interventions.

18.
iScience ; 27(4): 109515, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38591010

RESUMO

Transient anoxia causes amnesia and neuronal death. This is attributed to enhanced glutamate release and modeled as anoxia-induced long-term potentiation (aLTP). aLTP is mediated by glutamate receptors and nitric oxide (·NO) and occludes stimulation-induced LTP. We identified a signaling cascade downstream of ·NO leading to glutamate release and a glutamate-·NO loop regeneratively boosting aLTP. aLTP in entothelial ·NO synthase (eNOS)-knockout mice and blocking neuronal NOS (nNOS) activity suggested that both nNOS and eNOS contribute to aLTP. Immunostaining result showed that eNOS is predominantly expressed in vascular endothelia. Transient anoxia induced a long-lasting Ca2+ elevation in astrocytes that mirrored aLTP. Blocking astrocyte metabolism or depletion of the NMDA receptor ligand D-serine abolished eNOS-dependent aLTP, suggesting that astrocytic Ca2+ elevation stimulates D-serine release from endfeet to endothelia, thereby releasing ·NO synthesized by eNOS. Thus, the neuro-glial-endothelial axis is involved in long-term enhancement of glutamate release after transient anoxia.

19.
J Neurosci ; 32(44): 15476-88, 2012 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-23115185

RESUMO

In addition to triggering the birthing process and milk release, the hypothalamic neuropeptide oxytocin (OXT) plays an important role in the regulation of complex social cognition and behavior. Previous work has shown that OXT can regulate hippocampal synaptic plasticity and improve hippocampus-dependent cognitive functions in the female mice, but the underlying mechanisms remain largely unclear. Here, we demonstrate that OXT promotes the maintenance of long-term potentiation (LTP) induced by one train of tetanic stimulation (TS) in the CA1 region of hippocampal slices from both nulliparous female and male rats through a previously unknown mechanism involving OXT receptor (OXTR)-dependent and epidermal growth factor receptor (EGFR)-mediated local translation of an atypical protein kinase C isoform, protein kinase Mζ (PKMζ), in dendrites. Using pharmacological and biochemical approaches, we show that both the conventional OXTR-associated signaling pathway (G(q/11)-coupled phospholipase C) and the transactivated EGFR downstream signaling pathways (phosphatidylinositol 3 kinase and extracellular signal-regulated kinase 1/2) are involved in the regulation of OXT. In addition, OXT stimulates local dendritic PKMζ mRNA translation via activation of a mammalian target of rapamycin-regulated mechanism. Furthermore, blockade of OXTR results in a modest decrease in the ability to maintain late-phase LTP induced by three trains of TS. These results reveal a novel OXTR-to-EGFR communication to regulate the new synthesis of PKMζ, which functions to promote the maintenance of LTP at hippocampal CA1 synapses.


Assuntos
Receptores ErbB/fisiologia , Potenciação de Longa Duração/efeitos dos fármacos , Ocitocina/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , Proteína Quinase C/biossíntese , Animais , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/efeitos dos fármacos , Células Cultivadas , Dendritos/efeitos dos fármacos , Dendritos/enzimologia , Estimulação Elétrica , Receptores ErbB/efeitos dos fármacos , Feminino , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Fosfatidilinositol 3-Quinases/metabolismo , Proteína Quinase C/genética , Ratos , Ratos Sprague-Dawley , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/enzimologia , Fosfolipases Tipo C/metabolismo
20.
J Neurosci ; 32(22): 7550-62, 2012 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-22649233

RESUMO

While stressful life events confer increased risk for the development of psychopathology, most individuals experiencing adversity maintain normal psychological functioning, suggesting that individual differences may influence the susceptibility to develop stress-related psychiatric disorders. However, little is known about what determines this difference between individuals at the molecular level. In the present study, we identify that protein tyrosine phosphatase nonreceptor type 5 (PTPN5) (also known as STEP) is a critical determinant of differences in individual susceptibility to develop stress-related cognitive and morphological changes in rats. Our data demonstrate that ablation of PTPN5 expression delays physiological recovery from stress and augments the development of stress-related cognitive and morphological changes, whereas overexpression of a constitutively active variant of PTPN5 enhances the individual's resilience to stress. Our data also reveal that reduced PTPN5 expression prolongs the duration of extracellular signal-regulated kinase activation, leading to an elevation of Ca(V)1.2 channel expression and a recovery delay of K(V)4.2 channels from inactivation, which in turn heightens neuronal vulnerability to glutamate toxicity. Moreover, intraperitoneal injections of L-type Ca(2+) channel blocker nifedipine after stress resulted in a significantly lower rate for developing stress-related cognitive and morphological changes seen in PTPN5 knockdown rats. Together, these results identify a novel role for PTPN5 in mediating the development of stress-related cognitive and morphological changes and suggest that people with PTPN5 deficiency may have a greater susceptibility to capture the deleterious effects of stress.


Assuntos
Encéfalo/patologia , Transtornos Cognitivos/etiologia , Suscetibilidade a Doenças/metabolismo , Individualidade , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Estresse Psicológico/complicações , Estresse Psicológico/patologia , Agressão , Análise de Variância , Animais , Biofísica , Encéfalo/efeitos dos fármacos , Encéfalo/ultraestrutura , Bloqueadores dos Canais de Cálcio/farmacologia , Linhagem Celular Transformada , Transtornos Cognitivos/patologia , Condicionamento Operante , Corticosterona/sangue , Fragmentação do DNA , Modelos Animais de Doenças , Estimulação Elétrica , Inibidores Enzimáticos/farmacologia , Ensaio de Imunoadsorção Enzimática/métodos , Comportamento Exploratório/efeitos dos fármacos , Preferências Alimentares/efeitos dos fármacos , Vetores Genéticos/fisiologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hipocampo/patologia , Hipocampo/fisiopatologia , Humanos , Técnicas In Vitro , L-Lactato Desidrogenase/metabolismo , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/fisiologia , MAP Quinase Quinase Quinases/metabolismo , Masculino , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neurônios/fisiologia , Nifedipino/farmacologia , Técnicas de Patch-Clamp , Proteínas Tirosina Fosfatases não Receptoras/genética , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Canais de Potássio Shal/metabolismo , Coloração pela Prata , Estresse Psicológico/sangue , Natação/psicologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa