RESUMO
Chick (CE) or duck embryo eggs are known for nutritional supplement foods in traditional East countries for physical fitness enhancement and postpartum conditioning for many years. In this study, we evaluated the effects of different parts of the 10-day CE (embryo: CEr, yolk: CEw, and chorioallantoic membrane: CEp) on the antifatigue and antiaging activities in a D-galactose- (D-gal) induced aging mice model. The results showed CEp obviously increased the muscle weight and the liver and muscle glycogen content and enhanced exercise performance. In the antiaging assay, CEp significantly increased the activity of superoxide dismutase (SOD) and Glutathione Peroxidase (GPx). Moreover, the immunohistochemistry results of NRF-2 and HO-1 were also detected in the livers of mice in the D-gal/CEp group. The only partially potential such as CEr might improve OFT function with TG level, and CEw had strange grip strength. Therefore, we suggest that CEp has a potent antifatigue ability and could minimize the occurrence of age-associated disorders, more than other parts of the 10 days chicken embryo egg.
Assuntos
Envelhecimento/efeitos dos fármacos , Produtos Biológicos/farmacologia , Embrião de Galinha , Suplementos Nutricionais , Animais , Membrana Corioalantoide/química , Gema de Ovo/química , Galactose/efeitos adversos , Força da Mão , Fígado/química , Fígado/efeitos dos fármacos , Masculino , Medicina Tradicional Chinesa , Camundongos , Camundongos Endogâmicos C57BL , Força Muscular/efeitos dos fármacos , Músculos/efeitos dos fármacos , Músculos/metabolismo , Superóxido Dismutase/metabolismoRESUMO
Beef extract (BE) is a nutritional supplement obtained by cooking beef meat. Compared with traditional chicken essence or clam extract, BE is cheaper to produce and may be used for wound healing, as a chemotherapy supplement, or to prevent fatigue. In this study, we evaluated the potential beneficial effects of BE on exercise performance and the related role of the gut microbiota. Pathogen-free male BALB/c mice were divided into three groups to receive vehicle or BE (0, 12.3, or 24.6 mL/kg) by oral gavage for 28 days. Exercise performance was evaluated using forelimb grip strength, swimming time to exhaustion, and physiological levels of fatigue-related biomarkers (serum lactate, blood urea nitrogen, and glucose levels) after physical challenges. BE supplementation elevated endurance and grip strength in a dose-dependent manner; significantly decreased lactate and blood urea nitrogen levels after physical challenge; and significantly increased muscle glycogen content. The germ-free mice supplemented with BE or an equal-calorie portion of albumin did not show significant differences from the other groups in exercise performance and levels of related biomarkers. Therefore, BE supplementation improved endurance and reduced fatigue, which might be related to BE composition, but had no correlation with the gut microbiota.