Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Plant Physiol ; 191(2): 904-924, 2023 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-36459587

RESUMO

Intracellular movement is an important step for the initial spread of virus in plants during infection. This process requires virus-encoded movement proteins (MPs) and their interaction with host factors. Despite the large number of known host factors involved in the movement of different viruses, little is known about host proteins that interact with one of the MPs encoded by potexviruses, the triple-gene-block protein 3 (TGBp3). The main obstacle lies in the relatively low expression level of potexviral TGBp3 in hosts and the weak or transient nature of interactions. Here, we used TurboID-based proximity labeling to identify the network of proteins directly or indirectly interacting with the TGBp3 of a potexvirus, Bamboo mosaic virus (BaMV). Endoplasmic reticulum (ER) luminal-binding protein 4 and calreticulin 3 of Nicotiana benthamiana (NbBiP4 and NbCRT3, respectively) associated with the functional TGBp3-containing BaMV movement complexes, but not the movement-defective mutant, TGBp3M. Fluorescent microscopy revealed that TGBp3 colocalizes with NbBiP4 or NbCRT3 and the complexes move together along ER networks to cell periphery in N. benthamiana. Loss- and gain-of-function experiments revealed that NbBiP4 or NbCRT3 is required for the efficient spread and accumulation of BaMV in infected leaves. In addition, overexpression of NbBiP4 or NbCRT3 enhanced the targeting of BaMV TGBp1 to plasmodesmata (PD), indicating that NbBiP4 and NbCRT3 interact with TGBp3 to promote the intracellular transport of virion cargo to PD that facilitates virus cell-to-cell movement. Our findings revealed additional roles for NbBiP4 and NbCRT3 in BaMV intracellular movement through ER networks or ER-derived vesicles to PD, which enhances the spread of BaMV in N. benthamiana.


Assuntos
Potexvirus , Proteínas Virais , Proteínas Virais/metabolismo , Proteínas de Transporte/metabolismo , Calreticulina/genética , Calreticulina/metabolismo , Plantas/metabolismo , Nicotiana/metabolismo , Retículo Endoplasmático/metabolismo
2.
Appl Microbiol Biotechnol ; 108(1): 303, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639795

RESUMO

Severe fever with thrombocytopenia syndrome virus (SFTSV) causes the highly fatal disease in humans. To facilitate diagnosis, the native form of subunit glycoprotein (Gn), a prime target for potential vaccines and therapies, was produced in Nicotiana benthamiana using a Bamboo mosaic virus-based vector system. By fusion with secretory signal tags, SSExt, derived from the extension protein, and the (SP)10 motif, the yield of the recombinant Gn (rGn) was remarkably increased to approximately 7 mg/kg infiltrated leaves. Ultimately, an rGn-based ELISA was successfully established for the detection of SFTSV-specific antibodies in serum samples from naturally infected monkeys. As validated with the reference method, the specificity and sensitivity of rGn-ELISA were 94% and 96%, respectively. In conclusion, utilizing well-suited fusion tags facilitates rGn production and purification in substantial quantities while preserving its antigenic properties. The rGn-ELISA, characterized by its commendable sensitivity and specificity could serve as a viable alternative diagnostic method for assessing SFTSV seroprevalence. KEY POINTS: • SFTSV Gn, fused with secretory signal tags, was expressed by the BaMV-based vector. • The plant fusion tags increased expression levels and eased the purification of rGn. • The rGn-ELISA was established and validated; its specificity and sensitivity > 94%.


Assuntos
Phlebovirus , Febre Grave com Síndrome de Trombocitopenia , Humanos , Febre Grave com Síndrome de Trombocitopenia/diagnóstico , Phlebovirus/genética , Phlebovirus/metabolismo , Estudos Soroepidemiológicos , Glicoproteínas/metabolismo , Anticorpos
3.
Plant Physiol ; 188(1): 593-607, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34695209

RESUMO

Virus infections that cause mosaic or mottling in leaves commonly also induce increased levels of reactive oxygen species (ROS). However, how ROS contributes to symptoms is less well documented. Bamboo mosaic virus (BaMV) causes chlorotic mosaic symptoms in both Brachypodium distachyon and Nicotiana benthamiana. The BaMV △CPN35 mutant with an N-terminal deletion of its coat protein gene exhibits asymptomatic infection independently of virus titer. Histochemical staining of ROS in mock-, BaMV-, and BaMV△CPN35-infected leaves revealed that hydrogen peroxide (H2O2) accumulated solely in BaMV-induced chlorotic spots. Moreover, exogenous H2O2 treatment enhanced yellowish chlorosis in BaMV-infected leaves. Both BaMV and BaMV△CPN35 infection could induce the expression of Cu/Zu superoxide dismutase (CSD) antioxidants at messenger RNA and protein level. However, BaMV triggered the abundant accumulation of full-length NbCSD2 preprotein (prNbCSD2, without transit peptide cleavage), whereas BaMV△CPN35 induced a truncated prNbCSD2. Confocal microscopy showed that majority of NbCSD2-green fluorescent protein (GFP) predominantly localized in the cytosol upon BaMV infection, but BaMV△CPN35 infection tended to cause NbCSD2-GFP to remain in chloroplasts. By 5'-RNA ligase-mediated rapid amplification of cDNA ends, we validated CSDs are the targets of miR398 in vivo. Furthermore, BaMV infection increased the level of miR398, while the level of BaMV titer was regulated positively by miR398 but negatively by CSD2. In contrast, overexpression of cytosolic form NbCSD2, impairing the transport into chloroplasts, greatly enhanced BaMV accumulation. Taken together, our results indicate that induction of miR398 by BaMV infection may facilitate viral titer accumulation, and cytosolic prNbCSD2 induction may contribute to H2O2 accumulation, resulting in the development of BaMV chlorotic symptoms in plants.


Assuntos
Antioxidantes/metabolismo , Brachypodium/genética , Brachypodium/virologia , Peróxido de Hidrogênio/metabolismo , Nicotiana/genética , Nicotiana/virologia , Doenças das Plantas/genética , Potexvirus/patogenicidade , Brachypodium/metabolismo , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Produtos Agrícolas/virologia , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/virologia , Nicotiana/metabolismo , Virulência/efeitos dos fármacos , Virulência/genética
4.
Plant Physiol ; 188(2): 1061-1080, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-34747475

RESUMO

Infection cycles of viruses are highly dependent on membrane-associated host factors. To uncover the infection cycle of Bamboo mosaic virus (BaMV) in detail, we purified the membrane-associated viral complexes from infected Nicotiana benthamiana plants and analyzed the involved host factors. Four isoforms of voltage-dependent anion channel (VDAC) proteins on the outer membrane of mitochondria were identified due to their upregulated expression in the BaMV complex-enriched membranous fraction. Results from loss- and gain-of-function experiments indicated that NbVDAC2, -3, and -4 are essential for efficient BaMV accumulation. During BaMV infection, all NbVDACs concentrated into larger aggregates, which overlapped and trafficked with BaMV virions to the structure designated as the "dynamic BaMV-induced complex." Besides the endoplasmic reticulum and mitochondria, BaMV replicase and double-stranded RNAs were also found in this complex, suggesting the dynamic BaMV-induced complex is a replication complex. Yeast two-hybrid and pull-down assays confirmed that BaMV triple gene block protein 1 (TGBp1) could interact with NbVDACs. Confocal microscopy revealed that TGBp1 is sufficient to induce NbVDAC aggregates, which suggests that TGBp1 may play a pivotal role in the NbVDAC-virion complex. Collectively, these findings indicate that NbVDACs may associate with the dynamic BaMV-induced complex via TGBp1 and NbVDAC2, -3, or -4 and can promote BaMV accumulation. This study reveals the involvement of mitochondrial proteins in a viral complex and virus infection.


Assuntos
Proteínas de Membrana/metabolismo , Vírus do Mosaico/patogenicidade , Nicotiana/virologia , Doenças das Plantas/virologia , Potexvirus/patogenicidade , RNA Polimerase Dependente de RNA/metabolismo , Canais de Ânion Dependentes de Voltagem/metabolismo , Interações Hospedeiro-Parasita
5.
Int J Mol Sci ; 24(9)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37176135

RESUMO

Plants are vulnerable to the challenges of unstable environments and pathogen infections due to their immobility. Among various stress conditions, viral infection is a major threat that causes significant crop loss. In response to viral infection, plants undergo complex molecular and physiological changes, which trigger defense and morphogenic pathways. Transcription factors (TFs), and their interactions with cofactors and cis-regulatory genomic elements, are essential for plant defense mechanisms. The transcriptional regulation by TFs is crucial in establishing plant defense and associated activities during viral infections. Therefore, identifying and characterizing the critical genes involved in the responses of plants against virus stress is essential for the development of transgenic plants that exhibit enhanced tolerance or resistance. This article reviews the current understanding of the transcriptional control of plant defenses, with a special focus on NAC, MYB, WRKY, bZIP, and AP2/ERF TFs. The review provides an update on the latest advances in understanding how plant TFs regulate defense genes expression during viral infection.


Assuntos
Vírus de Plantas , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Vírus de Plantas/genética , Vírus de Plantas/metabolismo , Estresse Fisiológico/genética
6.
J Integr Plant Biol ; 65(6): 1369-1382, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36794821

RESUMO

Bamboo is one of the fastest growing plants among monocotyledonous species and is grown extensively in subtropical regions. Although bamboo has high economic value and produces much biomass quickly, gene functional research is hindered by the low efficiency of genetic transformation in this species. We therefore explored the potential of a bamboo mosaic virus (BaMV)-mediated expression system to investigate genotype-phenotype associations. We determined that the sites between the triple gene block proteins (TGBps) and the coat protein (CP) of BaMV are the most efficient insertion sites for the expression of exogenous genes in both monopodial and sympodial bamboo species. Moreover, we validated this system by individually overexpressing the two endogenous genes ACE1 and DEC1, which resulted in the promotion and suppression of internode elongation, respectively. In particular, this system was able to drive the expression of three 2A-linked betalain biosynthesis genes (more than 4 kb in length) to produce betalain, indicating that it has high cargo capacity and may provide the prerequisite basis for the development of a DNA-free bamboo genome editing platform in the future. Since BaMV can infect multiple bamboo species, we anticipate that the system described in this study will greatly contribute to gene function research and further promote the molecular breeding of bamboo.


Assuntos
Nicotiana , Potexvirus , Nicotiana/metabolismo , Plantas , Potexvirus/genética , Potexvirus/metabolismo , Fenótipo
7.
Plant J ; 106(2): 435-453, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33506534

RESUMO

In mammals, DNA methylation is associated with aging. However, age-related DNA methylation changes during phase transitions largely remain unstudied in plants. Moso bamboo (Phyllostachys edulis) requires a very long time to transition from the vegetative to the floral phase. To comprehensively investigate the association of DNA methylation with aging, we present here single-base-resolution DNA methylation profiles using both high-throughput bisulfite sequencing and single-molecule nanopore-based DNA sequencing, covering the long period of vegetative growth and transition to flowering in moso bamboo. We discovered that CHH methylation gradually accumulates from vegetative to reproductive growth in a time-dependent fashion. Differentially methylated regions, correlating with chronological aging, occurred preferentially at both transcription start sites and transcription termination sites. Genes with CG methylation changes showed an enrichment of Gene Ontology (GO) categories in 'vegetative to reproductive phase transition of meristem'. Combining methylation data with mRNA sequencing revealed that DNA methylation in promoters, introns and exons may have different roles in regulating gene expression. Finally, circular RNA (circRNA) sequencing revealed that the flanking introns of circRNAs are hypermethylated and enriched in long terminal repeat (LTR) retrotransposons. Together, the observations in this study provide insights into the dynamic DNA methylation and circRNA landscapes, correlating with chronological age, which paves the way to study further the impact of epigenetic factors on flowering in moso bamboo.


Assuntos
Envelhecimento/genética , Metilação de DNA , Flores/crescimento & desenvolvimento , Poaceae/genética , RNA Circular/genética , RNA de Plantas/genética , Envelhecimento/fisiologia , Metilação de DNA/genética , Metilação de DNA/fisiologia , Elementos de DNA Transponíveis/genética , Elementos de DNA Transponíveis/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Estudo de Associação Genômica Ampla , Poaceae/crescimento & desenvolvimento , Poaceae/metabolismo , RNA Circular/metabolismo , RNA Circular/fisiologia , RNA de Plantas/metabolismo , RNA de Plantas/fisiologia , Análise de Sequência de DNA/métodos
8.
J Virol ; 95(20): e0083121, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34379502

RESUMO

Many positive-strand (+) RNA viruses produce subgenomic RNAs (sgRNAs) in the infection cycle through the combined activities of viral replicase and host proteins. However, knowledge about host proteins involved in direct sgRNA promoter recognition is limited. Here, in the partially purified replicase complexes from Bamboo mosaic virus (BaMV)-infected tissue, we have identified the Nicotiana benthamiana photosystem II oxygen-evolving complex protein, NbPsbO1, which specifically interacted with the promoter of sgRNA but not that of genomic RNA (gRNA). Silencing of NbPsbO1 expression suppressed BaMV accumulation in N. benthamiana protoplasts without affecting viral gRNA replication. Overexpression of wild-type NbPsbO1 stimulated BaMV sgRNA accumulation. Fluorescent microscopy examination revealed that the fluorescence associated with NbPsbO1 was redistributed from chloroplast granal thylakoids to stroma in BaMV-infected cells. Overexpression of a mislocalized mutant of NbPsbO1, dTPPsbO1-T7, inhibited BaMV RNA accumulation in N. benthamiana, whereas overexpression of an NbPsbO1 derivative, sPsbO1-T7, designed to be targeted to chloroplast stroma, upregulated the sgRNA level. Furthermore, depletion of NbPsbO1 in BaMV RdRp preparation significantly inhibited sgRNA synthesis in vitro but exerted no effect on (+) or (-) gRNA synthesis, which indicates that NbPsbO1 is required for efficient sgRNA synthesis. These results reveal a novel role for NbPsbO1 in the selective enhancement of BaMV sgRNA transcription, most likely via direct interaction with the sgRNA promoter. IMPORTANCE Production of subgenomic RNAs (sgRNAs) for efficient translation of downstream viral proteins is one of the major strategies adapted for viruses that contain a multicistronic RNA genome. Both viral genomic RNA (gRNA) replication and sgRNA transcription rely on the combined activities of viral replicase and host proteins, which recognize promoter regions for the initiation of RNA synthesis. However, compared to the cis-acting elements involved in the regulation of sgRNA synthesis, the host factors involved in sgRNA promoter recognition mostly remain to be elucidated. Here, we found a chloroplast protein, NbPsbO1, which specifically interacts with Bamboo mosaic virus (BaMV) sgRNA promoter. We showed that NbPsbO1 is relocated to the BaMV replication site in BaMV-infected cells and demonstrated that NbPsbO1 is required for efficient BaMV sgRNA transcription but exerts no effect on gRNA replication. This study provides a new insight into the regulating mechanism of viral gRNA and sgRNA synthesis.


Assuntos
Nicotiana/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Potexvirus/metabolismo , Regiões 3' não Traduzidas , Cloroplastos/metabolismo , Proteínas de Plantas/genética , Potexvirus/genética , Regiões Promotoras Genéticas/genética , Ligação Proteica , RNA/genética , RNA/metabolismo , RNA Viral/genética , RNA Polimerase Dependente de RNA , Nicotiana/genética , Nicotiana/virologia , Proteínas Virais/metabolismo , Proteínas do Complexo da Replicase Viral/genética , Proteínas do Complexo da Replicase Viral/metabolismo , Replicação Viral/fisiologia
9.
New Phytol ; 235(4): 1543-1557, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35524450

RESUMO

A gene upregulated in Nicotiana benthamiana after Bamboo mosaic virus (BaMV) infection was revealed as 1-deoxy-d-xylulose-5-phosphate reductoisomerase (NbDXR). DXR is the key enzyme in the 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway that catalyzes the conversion of 1-deoxy-d-xylulose 5-phosphate to 2-C-methyl-d-erythritol-4-phosphate. Knockdown and overexpression of NbDXR followed by BaMV inoculation revealed that NbDXR is involved in BaMV accumulation. Treating leaves with fosmidomycin, an inhibitor of DXR function, reduced BaMV accumulation. Subcellular localization confirmed that DXR is a chloroplast-localized protein by confocal microscopy. Furthermore, knockdown of 1-hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate reductase, one of the enzymes in the MEP pathway, also reduced BaMV accumulation. The accumulation of BaMV increased significantly in protoplasts treated with isopentenyl pyrophosphate. Thus, the metabolites of the MEP pathway could be involved in BaMV infection. To identify the critical components involved in BaMV accumulation, we knocked down the crucial enzyme of isoprenoid synthesis, NbGGPPS11 or NbGGPPS2. Only NbGGPPS2 was involved in BaMV infection. The geranylgeranyl pyrophosphate (GGPP) synthesized by NbGGPPS2 is known for gibberellin synthesis. We confirmed this result by supplying gibberellic acid exogenously on leaves, which increased BaMV accumulation. The de novo synthesis of gibberellic acid could assist BaMV accumulation.


Assuntos
Giberelinas , Nicotiana/virologia , Potexvirus , Eritritol/análogos & derivados , Eritritol/biossíntese , Giberelinas/metabolismo , Potexvirus/fisiologia , Fosfatos Açúcares/biossíntese , Nicotiana/metabolismo
10.
Int J Mol Sci ; 23(7)2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35409414

RESUMO

Mitochondrial respiratory complex I catalyzes electron transfer from NADH to ubiquinone and pumps protons from the matrix into the intermembrane space. In particular, the complex I subunits Nad1, Nad2, Nad4, and Nad5, which are encoded by the nad1, nad2, nad4, and nad5 genes, reside at the mitochondrial inner membrane and possibly function as proton (H+) and ion translocators. To understand the individual functional roles of the Nad1, Nad2, Nad4, and Nad5 subunits in bamboo, each cDNA of these four genes was cloned into the pYES2 vector and expressed in the mitochondria of the yeast Saccharomyces cerevisiae. The mitochondrial targeting peptide mt gene (encoding MT) and the egfp marker gene (encoding enhanced green fluorescent protein, EGFP) were fused at the 5'-terminal and 3'-terminal ends, respectively. The constructed plasmids were then transformed into yeast. RNA transcripts and fusion protein expression were observed in the yeast transformants. Mitochondrial localizations of the MT-Nad1-EGFP, MT-Nad2-EGFP, MT-Nad4-EGFP, and MT-Nad5-EGFP fusion proteins were confirmed by fluorescence microscopy. The ectopically expressed bamboo subunits Nad1, Nad2, Nad4, and Nad5 may function in ion translocation, which was confirmed by growth phenotype assays with the addition of different concentrations of K+, Na+, or H+.


Assuntos
Complexo I de Transporte de Elétrons , Saccharomyces cerevisiae , Clonagem Molecular , DNA Mitocondrial/genética , Complexo I de Transporte de Elétrons/genética , Mitocôndrias/genética , Filogenia , Saccharomyces cerevisiae/genética
11.
Int J Mol Sci ; 23(17)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36077222

RESUMO

Plant ARGONAUTES (AGOs) play a significant role in the defense against viral infection. Previously, we have demonstrated that AGO5s encoded in Phalaenopsis aphrodite subsp. formosana (PaAGO5s) took an indispensable part in defense against major viruses. To understand the underlying defense mechanism, we cloned PaAGO5s promoters (pPaAGO5s) and analyzed their activity in transgenic Nicotiana benthamiana using ß-glucuronidase (GUS) as a reporter gene. GUS activity analyses revealed that during Cymbidium mosaic virus (CymMV) and Odontoglossum ringspot virus (ORSV) infections, pPaAGO5b activity was significantly increased compared to pPaAGO5a and pPaAGO5c. Analysis of pPaAGO5b 5'-deletion revealed that pPaAGO5b_941 has higher activity during virus infection. Further, yeast one-hybrid analysis showed that the transcription factor NbMYB30 physically interacted with pPaAGO5b_941 to enhance its activity. Overexpression and silencing of NbMYB30 resulted in up- and downregulation of GUS expression, respectively. Exogenous application and endogenous measurement of phytohormones have shown that methyl jasmonate and salicylic acid respond to viral infections. NbMYB30 overexpression and its closest related protein, PaMYB30, in P. aphrodite subsp. formosana reduced CymMV accumulation in P. aphrodite subsp. formosana. Based on these discoveries, this study uncovers the interaction between virus-responsive promoter and the corresponding transcription factor in plants.


Assuntos
Potexvirus , Viroses , Plantas , Potexvirus/genética , Nicotiana/genética , Fatores de Transcrição
12.
J Virol ; 93(22)2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31511381

RESUMO

Bamboo mosaic virus (BaMV), a member of the Potexvirus genus, has a monopartite positive-strand RNA genome on which five open reading frames (ORFs) are organized. ORF1 encodes a 155-kDa nonstructural protein (REPBaMV) that plays a core function in replication/transcription of the viral genome. To find out cellular factors modulating the replication efficiency of BaMV, a putative REPBaMV-associated protein complex from Nicotiana benthamiana leaf was isolated on an SDS-PAGE gel, and a few proteins preferentially associated with REPBaMV were identified by tandem mass spectrometry. Among them, proliferating cell nuclear antigen (PCNA) was particularly noted. Overexpression of PCNA strongly suppressed the accumulation of BaMV coat protein and RNAs in leaf protoplasts. In addition, PCNA exhibited an inhibitory effect on BaMV polymerase activity. A pulldown assay confirmed a binding capability of PCNA toward BaMV genomic RNA. Mutations at D41 or F114 residues, which are critical for PCNA to function in nuclear DNA replication and repair, disabled PCNA from binding BaMV genomic RNA as well as suppressing BaMV replication. This suggests that PCNA bound to the viral RNA may interfere with the formation of a potent replication complex or block the replication process. Interestingly, BaMV is almost invisible in the newly emerging leaves where PCNA is actively expressed. Accordingly, PCNA is probably one of the factors restricting the proliferation of BaMV in young leaves. Foxtail mosaic virus and Potato virus X were also suppressed by PCNA in the protoplast experiment, suggesting a general inhibitory effect of PCNA on the replication of potexviruses.IMPORTANCE Knowing the dynamic interplay between plant RNA viruses and their host is a basic step toward first understanding how the viruses survive the plant defense mechanisms and second gaining knowledge of pathogenic control in the field. This study found that plant proliferating cell nuclear antigen (PCNA) imposes a strong inhibition on the replication of several potexviruses, including Bamboo mosaic virus, Foxtail mosaic virus, and Potato virus X Based on the tests on Bamboo mosaic virus, PCNA is able to bind the viral genomic RNA, and this binding is a prerequisite for the protein to suppress the virus replication. This study also suggests that PCNA plays an important role in restricting the proliferation of potexviruses in the rapidly dividing tissues of plants.


Assuntos
Potexvirus/metabolismo , Antígeno Nuclear de Célula em Proliferação/genética , Proteínas não Estruturais Virais/metabolismo , Regiões 3' não Traduzidas/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Genoma Viral/genética , Folhas de Planta/virologia , Proteínas de Plantas/genética , Potexvirus/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ligação Proteica , RNA Viral/genética , RNA Polimerase Dependente de RNA/genética , Nicotiana/metabolismo , Nicotiana/virologia , Proteínas não Estruturais Virais/genética , Proteínas Virais/metabolismo , Replicação Viral/fisiologia
13.
New Phytol ; 224(2): 804-817, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31283838

RESUMO

RNA silencing is a major defense mechanism against invading viruses in plants. Argonaute proteins (AGOs) are the key players in RNA silencing. The number of AGO family members involved varies depending on the plant species and they play distinct or sometimes redundant roles in antiviral defense. By using a virus-induced gene silencing technique, it was found that Nicotiana benthamiana AGO1 restricted Bamboo mosaic virus (BaMV) accumulation, but NbAGO10, the closest paralog of NbAGO1, positively regulated BaMV accumulation. Immunoprecipitation assay revealed BaMV virus-derived small interfering RNAs (vsiRNAs) in NbAGO10 complexes. Transient overexpression of NbAGO10 increased BaMV RNA accumulation, but with co-expression of NbAGO1, BaMV RNA accumulation was reduced, which suggests that NbAGO10 may have competed with NbAGO1 for sequestering BaMV vsiRNA and prevented the formation of RNA-induced silencing complexes. In addition, overexpression of NbAGO10 decreased BaMV vsiRNA accumulation. A host enzyme, small RNA degrading nuclease 1 (SDN1), also was found to interact with NbAGO10 on in vivo pull-down assay. Silencing of SDN1 elevated BaMV vsiRNA level and decreased BaMV RNA accumulation in N. benthamiana, indicating that NbAGO10 might recruit SDN1 for BaMV vsiRNA degradation. The results herein suggested that NbAGO10 plays a pro-viral role by BaMV vsiRNA sequestration and degradation.


Assuntos
Proteínas Argonautas/metabolismo , Nicotiana/metabolismo , Doenças das Plantas/virologia , Proteínas de Plantas/metabolismo , Potexvirus , Replicação Viral/fisiologia , Proteínas Argonautas/genética , DNA de Plantas/genética , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Ligação Proteica , RNA Viral/metabolismo
14.
Plant Cell ; 28(10): 2586-2602, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27702772

RESUMO

RNA trafficking plays pivotal roles in regulating plant development, gene silencing, and adaptation to environmental stress. Satellite RNAs (satRNAs), parasites of viruses, depend on their helper viruses (HVs) for replication, encapsidation, and efficient spread. However, it remains largely unknown how satRNAs interact with viruses and the cellular machinery to undergo trafficking. Here, we show that the P20 protein of Bamboo mosaic potexvirus satRNA (satBaMV) can functionally complement in trans the systemic trafficking of P20-defective satBaMV in infected Nicotiana benthamiana The transgene-derived satBaMV, uncoupled from HV replication, was able to move autonomously across a graft union identified by RT-qPCR, RNA gel blot, and in situ RT-PCR analyses. Coimmunoprecipitation experiments revealed that the major nucleolar protein fibrillarin is coprecipitated in the P20 protein complex. Notably, silencing fibrillarin suppressed satBaMV-, but not HV-, phloem-based movement following grafting or coinoculation with HV Confocal microscopy revealed that the P20 protein colocalized with fibrillarin in the nucleoli and formed punctate structures associated with plasmodesmata. The mobile satBaMV RNA appears to exist as ribonucleoprotein (RNP) complex composed of P20 and fibrillarin, whereas BaMV movement proteins, capsid protein, and BaMV RNA are recruited with HV coinfection. Taken together, our findings provide insight into movement of satBaMV via the fibrillarin-satBaMV-P20 RNP complex in phloem-mediated systemic trafficking.


Assuntos
Vírus Auxiliares/genética , RNA de Plantas/genética , RNA Satélite/genética , Ribonucleoproteínas/metabolismo , Proteínas Virais/genética , Imunoprecipitação , Reação em Cadeia da Polimerase Via Transcriptase Reversa
15.
Mol Plant Microbe Interact ; 30(8): 631-645, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28459172

RESUMO

Plant viruses may exhibit age-dependent tissue preference in their hosts but the underlying mechanisms are not well understood. In this study, we provide several lines of evidence to reveal the determining role of a protein of the Nicotiana benthamiana chloroplast Hsp70 (NbcpHsp70) family, NbcpHsp70-2, involved in the preference of Bamboo mosaic virus (BaMV) to infect older tissues. NbcpHsp70 family proteins were identified in complexes pulled down with BaMV replicase as the bait. Among the isoforms of NbcpHsp70, only the specific silencing of NbcpHsp70-2 resulted in the significant decrease of BaMV RNA in N. benthamiana protopalsts, indicating that NbcpHsp70-2 is involved in the efficient replication of BaMV RNA. We further identified the age-dependent import regulation signal contained in the transit peptide of NbcpHsp70-2. Deletion, overexpression, and substitution experiments revealed that the signal in the transit peptide of NbcpHsp70-2 is crucial for both the import of NbcpHsp70-2 into older chloroplasts and the preference of BaMV for infecting older leaves of N. benthamiana. Together, these data demonstrated that BaMV may exploit a cellular age-dependent transportation mechanism to target a suitable environment for viral replication.


Assuntos
Cloroplastos/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Nicotiana/crescimento & desenvolvimento , Nicotiana/virologia , Folhas de Planta/metabolismo , Folhas de Planta/virologia , Potexvirus/fisiologia , Sequência de Aminoácidos , Sequência de Bases , Regulação para Baixo/genética , Técnicas de Silenciamento de Genes , Inativação Gênica , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/genética , Imunoprecipitação , Mutação/genética , Fenótipo , Doenças das Plantas/virologia , Regiões Promotoras Genéticas/genética , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Protoplastos/metabolismo , RNA Viral/metabolismo , Nicotiana/metabolismo
16.
Plant Biotechnol J ; 14(1): 231-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25879277

RESUMO

We describe a novel strategy to produce vaccine antigens using a plant cell-suspension culture system in lieu of the conventional bacterial or animal cell-culture systems. We generated transgenic cell-suspension cultures from Nicotiana benthamiana leaves carrying wild-type or chimeric Bamboo mosaic virus (BaMV) expression constructs encoding the viral protein 1 (VP1) epitope of foot-and-mouth disease virus (FMDV). Antigens accumulated to high levels in BdT38 and BdT19 transgenic cell lines co-expressing silencing suppressor protein P38 or P19. BaMV chimeric virus particles (CVPs) were subsequently purified from the respective cell lines (1.5 and 2.1 mg CVPs/20 g fresh weight of suspended biomass, respectively), and the resulting CVPs displayed VP1 epitope on the surfaces. Guinea pigs vaccinated with purified CVPs produced humoral antibodies. This study represents an important advance in the large-scale production of immunopeptide vaccines in a cost-effective manner using a plant cell-suspension culture system.


Assuntos
Quimera/metabolismo , Epitopos/metabolismo , Nicotiana/genética , Células Vegetais/metabolismo , Potexvirus/fisiologia , Vírion/metabolismo , Animais , Especificidade de Anticorpos/imunologia , Epitopos/imunologia , Epitopos/ultraestrutura , Cobaias , Imunização , Plantas Geneticamente Modificadas , Recombinação Genética/genética , Suspensões , Nicotiana/citologia , Nicotiana/virologia , Vírion/ultraestrutura
17.
Arch Virol ; 161(4): 1091-4, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26923929

RESUMO

The complete genome sequences of three isolates of bamboo mosaic virus (BaMV) from mainland China were determined and compared to those of BaMV isolates from Taiwan. Sequence analysis showed that isolate BaMV-JXYBZ1 from Fuzhou shares 98 % nucleotide sequence identity with BaMV-YTHSL14 from nucleotides 2586 to 6306, and more than 94 % nucleotide sequence identity with BaMV-MUZHUBZ2 in other regions. Recombination and phylogenetic analyses indicate that BaMV-JXYBZ1 is a recombinant with one recombination breakpoint. To our knowledge, this is the first report of a BaMV recombinant worldwide.


Assuntos
Doenças das Plantas/virologia , Poaceae/virologia , Potexvirus/genética , Vírus Reordenados , Bambusa/virologia , China , Filogenia , Potexvirus/isolamento & purificação
18.
PLoS Pathog ; 9(6): e1003405, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23754943

RESUMO

The triple-gene-block protein 3 (TGBp3) of Bamboo mosaic virus (BaMV) is an integral endoplasmic reticulum (ER) membrane protein which is assumed to form a membrane complex to deliver the virus intracellularly. However, the virus entity that is delivered to plasmodesmata (PD) and its association with TGBp3-based complexes are not known. Results from chemical extraction and partial proteolysis of TGBp3 in membrane vesicles revealed that TGBp3 has a right-side-out membrane topology; i.e., TGBp3 has its C-terminal tail exposed to the outer surface of ER. Analyses of the TGBp3-specific immunoprecipitate of Sarkosyl-extracted TGBp3-based complex revealed that TGBp1, TGBp2, TGBp3, capsid protein (CP), replicase and viral RNA are potential constituents of virus movement complex. Substantial co-fractionation of TGBp2, TGBp3 and CP, but not TGBp1, in the early eluted gel filtration fractions in which virions were detected after TGBp3-specific immunoprecipitation suggested that the TGBp2- and TGBp3-based complex is able to stably associate with the virion. This notion was confirmed by immunogold-labeling transmission electron microscopy (TEM) of the purified virions. In addition, mutational and confocal microscopy analyses revealed that TGBp3 plays a key role in virus cell-to-cell movement by enhancing the TGBp2- and TGBp3-dependent PD localization of TGBp1. Taken together, our results suggested that the cell-to-cell movement of potexvirus requires stable association of the virion cargo with the TGBp2- and TGBp3-based membrane complex and recruitment of TGBp1 to the PD by this complex.


Assuntos
Potexvirus/fisiologia , Proteínas Virais/metabolismo , Vírion/metabolismo , Montagem de Vírus/fisiologia , Estrutura Terciária de Proteína , Nicotiana/citologia , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/virologia , Proteínas Virais/genética , Vírion/genética
19.
Mol Plant Microbe Interact ; 27(11): 1211-25, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25025779

RESUMO

In this study, we investigated the fine regulation of cell-to-cell movement of Bamboo mosaic virus (BaMV). We report that the coat protein (CP) of BaMV is phosphorylated in planta at position serine 241 (S241), in a process involving Nicotiana benthamiana casein kinase 2α (NbCK2α). BaMV CP and NbCK2α colocalize at the plasmodesmata, suggesting that phosphorylation of BaMV may be involved in its movement. S241 was mutated to examine the effects of temporal and spatial dysregulation of phosphorylation on i) the interactions between CP and viral RNA and ii) the regulation of cell-to-cell movement. Replacement of S241 with alanine did not affect RNA binding affinity but moderately impaired cell-to-cell movement. A negative charge at position 241 reduced the ability of CP to bind RNA and severely interfered with cell-to-cell movement. Deletion of residues 240 to 242 increased the affinity of CP to viral RNA and dramatically impaired cell-to-cell movement. A threonine at position 241 changed the binding preference of CP toward genomic RNA and inhibited cell-to-cell movement. Together, these results reveal a fine regulatory mechanism for the cell-to-cell movement of BaMV, which involves the modulation of RNA binding affinity through appropriate phosphorylation of CP by NbCK2α.


Assuntos
Proteínas do Capsídeo/metabolismo , Caseína Quinase II/metabolismo , Nicotiana/enzimologia , Doenças das Plantas/virologia , Potexvirus/fisiologia , Sequência de Aminoácidos , Proteínas do Capsídeo/genética , Caseína Quinase II/genética , Genes Reporter , Modelos Biológicos , Dados de Sequência Molecular , Mutação , Fosforilação , Folhas de Planta/citologia , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/virologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plasmodesmos/virologia , Potexvirus/genética , Potexvirus/ultraestrutura , Ligação Proteica , RNA Viral/genética , Proteínas Recombinantes de Fusão , Nicotiana/citologia , Nicotiana/genética , Nicotiana/virologia
20.
Plant Biotechnol J ; 12(3): 330-43, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24283212

RESUMO

Plant virus-based gene-silencing vectors have been extensively and successfully used to elucidate functional genomics in plants. However, only limited virus-induced gene-silencing (VIGS) vectors can be used in both monocot and dicot plants. Here, we established a dual gene-silencing vector system based on Bamboo mosaic virus (BaMV) and its satellite RNA (satBaMV). Both BaMV and satBaMV vectors could effectively silence endogenous genes in Nicotiana benthamiana and Brachypodium distachyon. The satBaMV vector could also silence the green fluorescent protein (GFP) transgene in GFP transgenic N. benthamiana. GFP transgenic plants co-agro-inoculated with BaMV and satBaMV vectors carrying sulphur and GFP genes, respectively, could simultaneously silence both genes. Moreover, the silenced plants could still survive with the silencing of genes essential for plant development such as heat-shock protein 90 (Hsp90) and Hsp70. In addition, the satBaMV- but not BaMV-based vector could enhance gene-silencing efficiency in newly emerging leaves of N. benthamiana deficient in RNA-dependant RNA polymerase 6. The dual gene-silencing vector system of BaMV and satBaMV provides a novel tool for comparative functional studies in monocot and dicot plants.


Assuntos
Brachypodium/genética , Vetores Genéticos/genética , Nicotiana/genética , Potexvirus/genética , RNA Satélite/genética , RNA Viral/genética , Inativação Gênica , Proteínas de Fluorescência Verde , Folhas de Planta/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , RNA Polimerase Dependente de RNA/genética , Plântula/genética , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa