Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 596(7873): 576-582, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34381210

RESUMO

Non-genetic mechanisms have recently emerged as important drivers of cancer therapy failure1, where some cancer cells can enter a reversible drug-tolerant persister state in response to treatment2. Although most cancer persisters remain arrested in the presence of the drug, a rare subset can re-enter the cell cycle under constitutive drug treatment. Little is known about the non-genetic mechanisms that enable cancer persisters to maintain proliferative capacity in the presence of drugs. To study this rare, transiently resistant, proliferative persister population, we developed Watermelon, a high-complexity expressed barcode lentiviral library for simultaneous tracing of each cell's clonal origin and proliferative and transcriptional states. Here we show that cycling and non-cycling persisters arise from different cell lineages with distinct transcriptional and metabolic programs. Upregulation of antioxidant gene programs and a metabolic shift to fatty acid oxidation are associated with persister proliferative capacity across multiple cancer types. Impeding oxidative stress or metabolic reprogramming alters the fraction of cycling persisters. In human tumours, programs associated with cycling persisters are induced in minimal residual disease in response to multiple targeted therapies. The Watermelon system enabled the identification of rare persister lineages that are preferentially poised to proliferate under drug pressure, thus exposing new vulnerabilities that can be targeted to delay or even prevent disease recurrence.


Assuntos
Ciclo Celular , Linhagem da Célula , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/patologia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Antioxidantes/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Linhagem da Célula/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Clonais/efeitos dos fármacos , Células Clonais/metabolismo , Células Clonais/patologia , Código de Barras de DNA Taxonômico , Ácidos Graxos/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Lentivirus/genética , Recidiva Local de Neoplasia/genética , Neoplasias/genética , Neoplasias/metabolismo , Proteínas Oncogênicas/antagonistas & inibidores , Oxirredução , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Transcrição Gênica/efeitos dos fármacos
2.
Cancer Res ; 84(8): 1303-1319, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38359163

RESUMO

The majority of EGFR mutant lung adenocarcinomas respond well to EGFR tyrosine kinase inhibitors (TKI). However, most of these responses are partial, with drug-tolerant residual disease remaining even at the time of maximal response. This residual disease can ultimately lead to relapses, which eventually develop in most patients. To investigate the cellular and molecular properties of residual tumor cells in vivo, we leveraged patient-derived xenograft (PDX) models of EGFR mutant lung cancer. Subcutaneous EGFR mutant PDXs were treated with the third-generation TKI osimertinib until maximal tumor regression. Residual tissue inevitably harbored tumor cells that were transcriptionally distinct from bulk pretreatment tumor. Single-cell transcriptional profiling provided evidence of cells matching the profiles of drug-tolerant cells present in the pretreatment tumor. In one of the PDXs analyzed, osimertinib treatment caused dramatic transcriptomic changes that featured upregulation of the neuroendocrine lineage transcription factor ASCL1. Mechanistically, ASCL1 conferred drug tolerance by initiating an epithelial-to-mesenchymal gene-expression program in permissive cellular contexts. This study reveals fundamental insights into the biology of drug tolerance, the plasticity of cells through TKI treatment, and why specific phenotypes are observed only in certain tumors. SIGNIFICANCE: Analysis of residual disease following tyrosine kinase inhibitor treatment identified heterogeneous and context-specific mechanisms of drug tolerance in lung cancer that could lead to the development of strategies to forestall drug resistance. See related commentary by Rumde and Burns, p. 1188.


Assuntos
Acrilamidas , Carcinoma Pulmonar de Células não Pequenas , Indóis , Neoplasias Pulmonares , Pirimidinas , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Receptores ErbB/genética , Resistencia a Medicamentos Antineoplásicos/genética , Recidiva Local de Neoplasia/tratamento farmacológico , Compostos de Anilina/farmacologia , Compostos de Anilina/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Mutação , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética
3.
Nat Commun ; 13(1): 7690, 2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36509758

RESUMO

The brain is a major sanctuary site for metastatic cancer cells that evade systemic therapies. Through pre-clinical pharmacological, biological, and molecular studies, we characterize the functional link between drug resistance and central nervous system (CNS) relapse in Epidermal Growth Factor Receptor- (EGFR-) mutant non-small cell lung cancer, which can progress in the brain when treated with the CNS-penetrant EGFR inhibitor osimertinib. Despite widespread osimertinib distribution in vivo, the brain microvascular tumor microenvironment (TME) is associated with the persistence of malignant cell sub-populations, which are poised to proliferate in the brain as osimertinib-resistant lesions over time. Cellular and molecular features of this poised state are regulated through a Ras homolog family member A (RhoA) and Serum Responsive Factor (SRF) gene expression program. RhoA potentiates the outgrowth of disseminated tumor cells on osimertinib treatment, preferentially in response to extracellular laminin and in the brain. Thus, we identify pre-existing and adaptive features of metastatic and drug-resistant cancer cells, which are enhanced by RhoA/SRF signaling and the brain TME during the evolution of osimertinib-resistant disease.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Proteína rhoA de Ligação ao GTP/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Recidiva Local de Neoplasia/tratamento farmacológico , Receptores ErbB/genética , Compostos de Anilina/farmacologia , Compostos de Anilina/uso terapêutico , Encéfalo/patologia , Mutação , Resistencia a Medicamentos Antineoplásicos/genética , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa