Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Plant Biotechnol J ; 22(6): 1652-1668, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38345936

RESUMO

Rhizomes are modified stems that grow underground and produce new individuals genetically identical to the mother plant. Recently, a breakthrough has been made in efforts to convert annual grains into perennial ones by utilizing wild rhizomatous species as donors, yet the developmental biology of this organ is rarely studied. Oryza longistaminata, a wild rice species featuring strong rhizomes, provides a valuable model for exploration of rhizome development. Here, we first assembled a double-haplotype genome of O. longistaminata, which displays a 48-fold improvement in contiguity compared to the previously published assembly. Furthermore, spatiotemporal transcriptomics was performed to obtain the expression profiles of different tissues in O. longistaminata rhizomes and tillers. Two spatially reciprocal cell clusters, the vascular bundle 2 cluster and the parenchyma 2 cluster, were determined to be the primary distinctions between the rhizomes and tillers. We also captured meristem initiation cells in the sunken area of parenchyma located at the base of internodes, which is the starting point for rhizome initiation. Trajectory analysis further indicated that the rhizome is regenerated through de novo generation. Collectively, these analyses revealed a spatiotemporal transcriptional transition underlying the rhizome initiation, providing a valuable resource for future perennial crop breeding.


Assuntos
Oryza , Rizoma , Transcriptoma , Rizoma/genética , Rizoma/crescimento & desenvolvimento , Rizoma/metabolismo , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Transcriptoma/genética , Regulação da Expressão Gênica de Plantas , Perfilação da Expressão Gênica , Genoma de Planta/genética
2.
Arthroscopy ; 40(4): 1264-1276.e1, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37716628

RESUMO

PURPOSE: To compare clinical and radiographic outcomes of medial patellofemoral ligament reconstruction (MPFL-R) and medial patellofemoral complex reconstruction (MPFC-R) for recurrent patellar dislocation. Outcome measures were compared based on the Insall-Salvati index. METHODS: Patients who were diagnosed with recurrent patellar dislocation and underwent either MPFL-R or MPFC-R (combined reconstruction of MPFL and medial quadriceps tendon-femoral ligament) were retrospectively analyzed. Group allocation was based on surgical procedure and patient characteristics were collected. Clinical assessments included patient-reported outcome measures (PROMs) and return-to-sports rates. Minimal clinically important difference analysis was performed. A subgroup analysis of PROMs was carried out between patients with an Insall-Salvati index ≤1.2 versus >1.2. The patellar tilt angle, lateral patellar displacement, and bisect offset ratio were measured pre- and postsurgery. Functional failures and complications were assessed. RESULTS: Overall, 70 patients (72 knees) in the MPFL-R group and 58 patients (61 knees) in the MPFC-R group were included. Patient characteristics were comparable between the groups. At a minimum follow-up of 24 (mean, 50.6 ± 22.1) months, all PROMs were substantially improved (P < .001), without significant intergroup differences. The percentages of patients reaching the minimal clinically important difference were similar after MPFL-R and MPFC-R: 98.6% versus 93.4% (International Knee Documentation Committee), 97.2% versus 98.4% (Lysholm), 98.6% versus 100% (Kujala), and 77.8% versus 72.1% (Tegner). The subgroup analysis based on patellar height and the return-to-sport rates also suggested comparable results. Radiographic evaluation demonstrated significantly smaller lateral patellar displacements (P = .004) and bisect offset ratios (P < .001) but similar patellar tilt angles after MPFC-R. Four (5.6%) patients receiving MPFL-R and 2 (3.3%) patients receiving MPFC-R reported recurrence of functional instability, without statistically significant difference. CONCLUSIONS: MPFC-R resulted in similar overall clinical and radiographic outcomes to MPFL-R in treating recurrent patellar dislocation. MPFC-R might not provide additional benefits for patients with an Insall-Salvati index >1.2. LEVEL OF EVIDENCE: Level IV, therapeutic, retrospective cohort study.


Assuntos
Músculos Isquiossurais , Luxações Articulares , Instabilidade Articular , Luxação Patelar , Articulação Patelofemoral , Humanos , Luxação Patelar/diagnóstico por imagem , Luxação Patelar/cirurgia , Estudos Retrospectivos , Articulação Patelofemoral/diagnóstico por imagem , Articulação Patelofemoral/cirurgia , Autoenxertos , Tíbia/cirurgia , Ligamentos Articulares/diagnóstico por imagem , Ligamentos Articulares/cirurgia , Tendões/transplante , Patela/cirurgia , Instabilidade Articular/cirurgia
3.
New Phytol ; 239(5): 1919-1934, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37366232

RESUMO

Rice grain is a poor dietary source of zinc (Zn) but the primary source of cadmium (Cd) for humans; however, the molecular mechanisms for their accumulation in rice grain remain incompletely understood. This study functionally characterized a tonoplast-localized transporter, OsMTP1. OsMTP1 was preferentially expressed in the roots, aleurone layer, and embryo of seeds. OsMTP1 knockout decreased Zn concentration in the root cell sap, roots, aleurone layer and embryo, and subsequently increased Zn concentration in shoots and polished rice (endosperm) without yield penalty. OsMTP1 haplotype analysis revealed elite alleles associated with increased Zn level in polished rice, mostly because of the decreased OsMTP1 transcripts. OsMTP1 expression in yeast enhanced Zn tolerance but did not affect that of Cd. While OsMTP1 knockout resulted in decreased uptake, translocation and accumulation of Cd in plant and rice grain, which could be attributed to the indirect effects of altered Zn accumulation. Our results suggest that rice OsMTP1 primarily functions as a tonoplast-localized transporter for sequestrating Zn into vacuole. OsMTP1 knockout elevated Zn concentration but prevented Cd deposition in polished rice without yield penalty. Thus, OsMTP1 is a candidate gene for enhancing Zn level and reducing Cd level in rice grains.


Assuntos
Oryza , Zinco , Humanos , Zinco/metabolismo , Cádmio/metabolismo , Oryza/metabolismo , Vacúolos/metabolismo , Raízes de Plantas/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Grão Comestível/metabolismo
4.
Arthroscopy ; 39(1): 102-111, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35840069

RESUMO

PURPOSE: To evaluate the clinical outcomes of arthroscopically assisted double-bundle medial patellofemoral complex reconstruction (MPFC-R). METHODS: A retrospective review was carried out among adult patients who experienced at least 2 patellar dislocations and underwent primary arthroscopically assisted MPFC-R between January 2014 and November 2019. Dejour classification, tibial tubercle-trochlear groove (TT-TG) distance, and patellar height (with Insall-Salvati index) were measured. Pre- and postoperative patellar tilt were compared. Information on outcome scores, ability to return to sports, postoperative recurrent dislocations, and complications was recorded. RESULTS: A total of 42 MPFC-Rs in 39 patients were included. Mean age at surgery was 22.2 ± 7.6 years; 69.2% of patients were female. Mean follow-up was 47.3 ± 20.2 months. Seventy-four percent of cases had Dejour B (19.0%), C (33.3%), and D (21.4%) trochlear dysplasia; mean TT-TG distance was 19.6 ± 3.5 mm, and mean Insall-Salvati index was 1.21 ± 0.17. Mean patellar tilt decreased from 27.6 ± 11.6° to 9.4 ± 6.5° (P < .001). All patients had statistically significant (P < .001) improvement in mean International Knee Documentation Committee (IKDC) (44.9 ± 18.2 to 87.5 ± 6.9), Lysholm (61.4 ± 16.6 to 94.1 ± 6.4), Kujala (56.0 ± 16.8 to 92.9 ± 5.3), and Tegner score (2.7 ± 1.3 to 4.6 ± 1.4). The majority of patients (96.9%) returned to sports, with 90.3% returning to the same or greater level of activity. No postoperative dislocations or subluxations were reported. CONCLUSIONS: Arthroscopically assisted double-bundle MPFC-R is a promising procedure to treat recurrent patellar instability at 2- to 7-year mid-term follow-up, despite the presence of trochlear dysplasia, elevated TT-TG distance and patellar alta. The improvement of IKDC score exceeded the minimal clinically important difference in 95.2% patients, and 66.7% surpassed the patient acceptable symptomatic state based on postoperative IKDC score with no redislocations being reported at latest follow-up. LEVEL OF EVIDENCE: Level IV, case series, retrospective.


Assuntos
Luxações Articulares , Instabilidade Articular , Luxação Patelar , Articulação Patelofemoral , Adulto , Humanos , Feminino , Adolescente , Adulto Jovem , Masculino , Luxação Patelar/cirurgia , Instabilidade Articular/etiologia , Articulação Patelofemoral/cirurgia , Estudos Retrospectivos , Ligamentos Articulares/cirurgia , Tíbia/cirurgia , Patela/cirurgia
5.
Yi Chuan ; 45(9): 765-780, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37731231

RESUMO

Asian cultivated rice has been domesticated from ancestors of the wild rice species Oryza rufipogon. During this process, important changes have occurred in many agronomic traits, such as plant height, grain shattering, and panicle shape, and the yield has also greatly increased. However, many favored traits (e.g., stress resistance) have been lost. The genome of O. longistaminata is of the same AA type as O. sativa, harboring many genes conferring resistance to biotic and abiotic stresses, and it is considered as a potential gene pool for genetic improvement of O. sativa. In this review, we summarize the basic research on O. longistaminata, including its resistance to biotic and abiotic stresses, its rhizome traits, and other traits that are of potential application value, such as bacterial blight resistance, drought resistance, heat tolerance, self-incompatibility, nitrogen efficiency, and high yield. Furthermore, we present the current applied research progress on perennial rice breeding based on the rhizome trait of O. longistaminata. Lastly, the possibility of de novo domestication of O. longistaminata is discussed. We expect this article to provide information to enhance the basic research of O. longistaminata and accelerate the genetic improvement of cultivated rice.


Assuntos
Oryza , Oryza/genética , Melhoramento Vegetal , Agricultura , Domesticação , Resistência à Seca
6.
BMC Evol Biol ; 19(1): 19, 2019 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-30634914

RESUMO

BACKGROUND: The genetic mechanisms underlying the domestication of animals and plants have been of great interest to biologists since Darwin. To date, little is known about the global pattern of gene expression changes during domestication. RESULTS: We generated and collected transcriptome data for seven pairs of domestic animals and plants including dog, silkworm, chicken, rice, cotton, soybean and maize and their wild progenitors and compared the expression profiles between the domestic and wild species. Intriguingly, although the number of expressed genes varied little, the domestic species generally exhibited lower gene expression diversity than did the wild species, and this lower diversity was observed for both domestic plants and different kinds of domestic animals including insect, bird and mammal in the whole-genome gene set (WGGS), candidate selected gene set (CSGS) and non-CSGS, with CSGS exhibiting a higher degree of decreased expression diversity. Moreover, different from previous reports which found 2 to 4% of genes were selected by human, we identified 6892 candidate selected genes accounting for 7.57% of the whole-genome genes in rice and revealed that fewer than 8% of the whole-genome genes had been affected by domestication. CONCLUSIONS: Our results showed that domestication affected the pattern of variation in gene expression throughout the genome and generally decreased the expression diversity across species, and this decrease may have been associated with decreased genetic diversity. This pattern might have profound effects on the phenotypic and physiological changes of domestic animals and plants and provide insights into the genetic mechanisms at the transcriptome level other than decreased genetic diversity and increased linkage disequilibrium underpinning artificial selection.


Assuntos
Domesticação , Regulação da Expressão Gênica , Variação Genética , Plantas/genética , Animais , Bombyx/genética , Galinhas/genética , Bases de Dados Genéticas , Cães/genética , Humanos , Desequilíbrio de Ligação/genética , Seleção Genética , Transcriptoma/genética , Zea mays/genética
7.
Proc Natl Acad Sci U S A ; 111(10): 3877-82, 2014 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-24554078

RESUMO

Transposable elements (TEs) and repetitive sequences make up over 35% of the rice (Oryza sativa) genome. The host regulates the activity of different TEs by different epigenetic mechanisms, including DNA methylation, histone H3K9 methylation, and histone H3K4 demethylation. TEs can also affect the expression of host genes. For example, miniature inverted repeat TEs (MITEs), dispersed high copy-number DNA TEs, can influence the expression of nearby genes. In plants, 24-nt small interfering RNAs (siRNAs) are mainly derived from repeats and TEs. However, the extent to which TEs, particularly MITEs associated with 24-nt siRNAs, affect gene expression remains elusive. Here, we show that the rice Dicer-like 3 homolog OsDCL3a is primarily responsible for 24-nt siRNA processing. Impairing OsDCL3a expression by RNA interference caused phenotypes affecting important agricultural traits; these phenotypes include dwarfism, larger flag leaf angle, and fewer secondary branches. We used small RNA deep sequencing to identify 535,054 24-nt siRNA clusters. Of these clusters, ∼82% were OsDCL3a-dependent and showed significant enrichment of MITEs. Reduction of OsDCL3a function reduced the 24-nt siRNAs predominantly from MITEs and elevated expression of nearby genes. OsDCL3a directly targets genes involved in gibberellin and brassinosteroid homeostasis; OsDCL3a deficiency may affect these genes, thus causing the phenotypes of dwarfism and enlarged flag leaf angle. Our work identifies OsDCL3a-dependent 24-nt siRNAs derived from MITEs as broadly functioning regulators for fine-tuning gene expression, which may reflect a conserved epigenetic mechanism in higher plants with genomes rich in dispersed repeats or TEs.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Oryza/genética , RNA Interferente Pequeno/genética , Ribonuclease III/genética , Sequência de Bases , Brassinosteroides/metabolismo , Imunoprecipitação da Cromatina , Primers do DNA/genética , Elementos de DNA Transponíveis/genética , Giberelinas/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Sequências Repetidas Invertidas/genética , Dados de Sequência Molecular , Oryza/crescimento & desenvolvimento , RNA Interferente Pequeno/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de RNA
8.
BMC Plant Biol ; 14: 160, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24920279

RESUMO

BACKGROUND: Cultivated rice consists of two important ecotypes, upland and irrigated, that have respectively adapted to either dry land or irrigated cultivation. Upland rice, widely adopted in rainfed upland areas in virtue of its little water requirement, contains abundant untapped genetic resources, such as genes for drought adaptation. With water shortage exacerbated and population expanding, the need for breeding crop varieties with drought adaptation becomes more and more urgent. However, a previous oversight in upland rice research reveals little information regarding its genetic mechanisms for upland adaption, greatly hindering progress in harnessing its genetic resources for breeding and cultivation. RESULTS: In this study, we selected 84 upland and 82 irrigated accessions from all over the world, phenotyped them under both irrigated and dry land environments, and investigated the phylogenetic relations and population structure of the upland ecotype using whole genome variation data. Further comparative analysis yields a list of differentiated genes that may account for the phenotypic and physiological differences between upland and irrigated rice. CONCLUSIONS: This study represents the first genomic investigation in a large sample of upland rice, providing valuable gene list for understanding upland rice adaptation, especially drought-related adaptation, and its subsequent utilization in modern agriculture.


Assuntos
Adaptação Fisiológica/genética , Genoma de Planta , Oryza/genética , Oryza/fisiologia , Irrigação Agrícola , Ecótipo , Genes de Plantas , Genética Populacional , Geografia , Anotação de Sequência Molecular , Fenótipo , Filogenia , Raízes de Plantas/anatomia & histologia , Polimorfismo de Nucleotídeo Único/genética , Análise de Componente Principal , Característica Quantitativa Herdável , Especificidade da Espécie
9.
Breed Sci ; 63(5): 476-82, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24757387

RESUMO

Hybrid sterility hinders the transfer of useful traits between Oryza sativa and O. glaberrima. In order to further understand the nature of interspecific hybrid sterility between these two species, a strategy of multi-donors was used to elucidate the range of interspecific hybrid sterility in this study. Fifty-nine accessions of O. glaberrima were used as female parents for hybridization with japonica cultivar Dianjingyou 1, after several backcrossings using Dianjingyou 1 as the recurrent parent and 135 BC6F1 sterile plants were selected for genotyping and deducing hybrid sterility QTLs. BC6F1 plants containing heterozygous target markers were selected and used to raise BC7F1 mapping populations for QTL confirmation and as a result, one locus for gamete elimination on chromosome 1 and two loci for pollen sterility on chromosome 4 and 12, which were distinguished from previous reports, were confirmed and designated as S37(t), S38(t) and S39(t), respectively. These results will be valuable for understanding the range of interspecific hybrid sterility, cloning these genes and improving rice breeding through gene introgression.

10.
Arthrosc Tech ; 13(2): 102853, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38435249

RESUMO

Recurrent patellar dislocation is a common patellofemoral disease that affects active adolescents. The optimal surgical treatment of recurrent patellar dislocation in skeletally immature patients remains controversial. This Technical Note describes an arthroscopically assisted double-bundle medial patellofemoral ligament (MPFL) augmentation. Orthocord suture, with ideal strength and partial bioabsorbable characteristics, is used as the stabilizer to augment and protect the native MPFL during its biological healing. Under an arthroscope, patellar tunnels are created with Kirshner wire at the upper third point of the medial articular margin and the midpoint of the proximal articular margin. A physeal-sparing transosseous suture fixation technique is applied at the femoral attachment. Two femoral tunnels are made with half-circle cutting needle, which is pierced into the femoral origin of the MPFL and exits the posterior femoral cortex. After dynamic assessments of knee range of motion and patellofemoral congruence, free ends of the Orthocord suture bundle are tied together at the external opening of the femoral tunnel. Transosseous suture fixation balances the requirements of anatomic restoration, reliable fixation, and physeal preservation, and thus may provide a promising alternative to current algorithm of addressing recurrent patellar dislocation in pediatric population.

11.
J Clin Med ; 12(2)2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36675609

RESUMO

Recurrent patellar dislocation is a commonly encountered patellofemoral disease. Prompt surgical intervention is indicated for recurrent dislocation to restore patellofemoral stability. As one of the most preferred procedures, medial patellofemoral ligament (MPFL) reconstruction has been implemented on a large scale. Femoral tunnel placement remains a crucial technical issue during MPFL reconstruction and is critical to ensure the isometry and proper tension of the graft. Currently, visual-palpatory anatomic landmarks and fluoroscopy-guided radiographic landmarks comprise the main approaches to intraoperative femoral tunnel positioning. However, the accuracy of both methods has been questioned. This article introduces an arthroscopic femoral tunnel placement technique. Apart from traditional anteromedial and anterolateral portals, two auxiliary arthroscopic portals are specially designed. The adductor tubercle, the medial epicondyle and the posterior edge are selected as main anatomic landmarks and are directly visualized in sequence under arthroscope. The relative position between the femoral attachment of the MPFL and the three landmarks is measured on preoperative three-dimensional computed tomography, providing semi-quantified reference for intraoperative localization. This technique achieves minimally invasive tunnel placement without X-ray exposure, and especially suits obese patients for whom palpatory methods are difficult to perform.

12.
Front Plant Sci ; 14: 1184489, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37645460

RESUMO

Endophytic bacterial microbiomes of plants contribute to the physiological health of the host and its adaptive evolution and stress tolerance. Wild rice possesses enriched endophytic bacteria diversity, which is a potential resource for sustainable agriculture. Oryza officinalis is a unique perennial wild rice species in China with rich genetic resources. However, endophytic bacterial communities of this species and their plant growth-promoting (PGP) traits remain largely unknown. In this study, endophytic bacteria in the root, stem, and leaf tissues of O. officinalis were characterized using 16S rRNA gene Illumina sequencing. Culturable bacterial endophytes were also isolated from O. officinalis tissues and characterized for their PGP traits. The microbiome analysis showed a more complex structure and powerful function of the endophytic bacterial community in roots compared with those in other tissue compartments. Each compartment had its specific endophytic bacterial biomarkers, including Desulfomonile and Ruminiclostridium for roots; Lactobacillus, Acinetobacter, Cutibacterium and Dechloromonas for stems; and Stenotrophomonas, Chryseobacterium, Achromobacter and Methylobacterium for leaves. A total of 96 endophytic bacterial strains with PGP traits of phosphate solubilization, potassium release, nitrogen fixation, 1-aminocyclopropane-1-carboxylate (ACC) deaminase secretion, and siderophore or indole-3-acetic acid (IAA) production were isolated from O. officinalis. Among them, 11 strains identified as Enterobacter mori, E. ludwigii, E. cloacae, Bacillus amyloliquefaciens, B. siamensis, Pseudomonas rhodesiae and Kosakonia oryzae were selected for inoculation of perennial rice based on their IAA production traits. These strains showed promising PGP effects on perennial rice seedlings. They promoted plants to form a strong root system, stimulate biomass accumulation, and increase chlorophyll content and nitrogen uptake, which could fulfil the ecologically sustainable cultivation model of perennial rice. These results provide insights into the bacterial endosphere of O. officinalis and its application potential in perennial rice. There is the prospect of mining beneficial endophytic bacteria from wild rice species, which could rewild the microbiome of cultivated rice varieties and promote their growth.

13.
Front Plant Sci ; 14: 1278196, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38034553

RESUMO

The undomesticated rice relative Oryza longistaminata is a valuable genetic resource for the improvement of the domesticated Asian rice, Oryza sativa. To facilitate the conservation, management, and use of O. longistaminata germplasm, we sought to quantify the population structure and diversity of this species across its geographic range, which includes most of sub-Saharan Africa, and to determine phylogenetic relationships to other AA-genome species of rice present in Africa, including the prevalence of interspecific hybridization between O. longistaminata and O. sativa. Though past plant breeding efforts to introgress genes from O. longistaminata have improved biotic stress resistance, ratooning ability, and yield in O. sativa, progress has been limited by substantial breeding barriers. Nevertheless, despite the strong breeding barriers observed by plant breeders who have attempted this interspecific cross, there have been multiple reports of spontaneous hybrids of O. sativa and O. longistaminata (aka "Obake") obtained from natural populations in Africa. However, the frequency and extent of such natural introgressions and their effect on the evolution of O. longistaminata had not been previously investigated. We studied 190 O. longistaminata accessions, primarily from the International Rice Research Institute genebank collection, along with 309 O. sativa, 25 Oryza barthii, and 83 Oryza glaberrima control outgroups, and 17 control interspecific O. sativa/O. longistaminata hybrids. We analyzed the materials using 178,651 single-nucleotide polymorphisms (SNPs) and seven plastid microsatellite markers. This study identified three genetic subpopulations of O. longistaminata, which correspond geographically to Northwestern Africa, Pan-Africa, and Southern Africa. We confirmed that O. longistaminata is, perhaps counterintuitively, more closely related to the Asian species, O. sativa, than the African species O. barthii and O. glaberrima. We identified 19 recent spontaneous interspecific hybrid individuals between O. sativa and O. longistaminata in the germplasm sampled. Notably, the recent introgression between O. sativa and O. longistaminata has been bidirectional. Moreover, low levels of O. sativa alleles admixed in many predominantly O. longistaminata accessions suggest that introgression also occurred in the distant past, but only in Southern Africa.

14.
Sci Total Environ ; 895: 164975, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37336402

RESUMO

Perennial grains have potential to contribute to ecological intensification of food production by enabling the direct harvest of human-edible crops without requiring annual cycles of disturbance and replanting. Studies of prototype perennial grains and other herbaceous perennials point to the ability of agroecosystems including these crops to protect water quality, enhance wildlife habitat, build soil quality, and sequester soil carbon. However, genetic improvement of perennial grain candidates has been hindered by limited investment due to uncertainty about whether the approach is viable. As efforts to develop perennial grain crops have expanded in past decades, critiques of the approach have arisen. With a recent report of perennial rice producing yields equivalent to those of annual rice over eight consecutive harvests, many theoretical concerns have been alleviated. Some valid questions remain over the timeline for new crop development, but we argue these may be mitigated by implementation of recent technological advances in crop breeding and genetics such as low-cost genotyping, genomic selection, and genome editing. With aggressive research investment in the development of new perennial grain crops, they can be developed and deployed to provide atmospheric greenhouse gas reductions.


Assuntos
Agricultura , Melhoramento Vegetal , Humanos , Grão Comestível , Produtos Agrícolas , Solo
15.
BMC Genomics ; 13: 300, 2012 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-22747568

RESUMO

BACKGROUND: DNA methylation plays important biological roles in plants and animals. To examine the rice genomic methylation landscape and assess its functional significance, we generated single-base resolution DNA methylome maps for Asian cultivated rice Oryza sativa ssp. japonica, indica and their wild relatives, Oryza rufipogon and Oryza nivara. RESULTS: The overall methylation level of rice genomes is four times higher than that of Arabidopsis. Consistent with the results reported for Arabidopsis, methylation in promoters represses gene expression while gene-body methylation generally appears to be positively associated with gene expression. Interestingly, we discovered that methylation in gene transcriptional termination regions (TTRs) can significantly repress gene expression, and the effect is even stronger than that of promoter methylation. Through integrated analysis of genomic, DNA methylomic and transcriptomic differences between cultivated and wild rice, we found that primary DNA sequence divergence is the major determinant of methylational differences at the whole genome level, but DNA methylational difference alone can only account for limited gene expression variation between the cultivated and wild rice. Furthermore, we identified a number of genes with significant difference in methylation level between the wild and cultivated rice. CONCLUSIONS: The single-base resolution methylomes of rice obtained in this study have not only broadened our understanding of the mechanism and function of DNA methylation in plant genomes, but also provided valuable data for future studies of rice epigenetics and the epigenetic differentiation between wild and cultivated rice.


Assuntos
Metilação de DNA , Regulação da Expressão Gênica de Plantas , Oryza/genética , Arabidopsis/genética , Mapeamento Cromossômico , Cromossomos/genética , Análise por Conglomerados , Citosina/metabolismo , Perfilação da Expressão Gênica , Genes de Plantas , Células Vegetais/metabolismo , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas
16.
Front Plant Sci ; 13: 866165, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35463392

RESUMO

The rhizome is an important organ through which many perennial plants are able to propagate vegetatively. Its ecological role has been thoroughly studied on many grass species while the underlying genetic basis is mainly investigated using a rhizomatous wild rice species-Oryza longistaminata. Previous studies have revealed that the rhizome trait in O. longistaminata is jointly controlled by multiple loci, yet how these loci interact with each other remains elusive. Here, an F2 population derived from Oryza sativa (RD23) and O. longistaminata was used to map loci that affect rhizome-related traits. We identified 13 major-effect loci that may jointly control rhizomatousness in O. longistaminata and a total of 51 quantitative trait loci (QTLs) were identified to affect rhizome abundance. Notably, some of these loci were found to have effects on more than one rhizome-related trait. For each trait, a genetic network was constructed according to the genetic expectations of the identified loci. Furthermore, to gain an overview of the genetic regulation on rhizome development, a comprehensive network integrating all these individual networks was assembled. This network consists of three subnetworks that control different aspects of rhizome expression. Judging from the nodes' role in the network and their corresponding traits, we speculated that qRHZ-3-1, qRHZ-4, qRHI-2, and qRHI-5 are the key loci for rhizome development. Functional verification using rhizome-free recombinant inbred lines (RILs) suggested that qRHI-2 and qRHI-5, two multi-trait controlling loci that appeared to be critical in our network analyses, are likely both needed for rhizome formation. Our results provide more insights into the genetic basis of rhizome development and may facilitate identification of key rhizome-related genes.

17.
Biotechnol Rep (Amst) ; 35: e00743, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35707315

RESUMO

Rice is frequently affected by drought. However, economic water usage by the crop less impacted the stress. Its improvement should thus rely on assessing and utilizing the genetic bases of Carbon balance and water use efficient traits. These days, sequence based analysis is widely used to identify the associated hotspot loci to a given trait of interest. For two cropping seasons, 135 Oryza sativa L./Oryza longistaminata RILs were phenotyped to four leaf physiological traits and single marker analysis was integrated to identify consistently and significantly correlated SNPs. Through the RADseq technique, 20,014 SNPs were identified from the phenotypically diversified lines and in particular, 20 SNPs were defined as significantly associated hotspot loci. This study therefore, implicated marker-trait associations for leaf physiological traits. And such significantly associated loci can be used as tools for marker assisted selection of the relatively drought tolerant and highly photosynthetic lines of perennial rice.

18.
Front Plant Sci ; 13: 1071038, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36518502

RESUMO

Perennial rice is a new type of rice that allows the harvest of rice for multiple years without growing new seedlings annually. This technology represents a green and sustainable agricultural production mode with many advantages for balancing agricultural ecology and food security. However, the differences in regeneration patterns between perennial and annual rice and the gene regulatory pathways of the apical dominance in axillary bud growth after harvest in perennial rice are still unclear. In this study, perennial rice (PR23) and annual rice (Chugeng28) were used to investigate axillary bud growth patterns before and after apical spike removal. After elimination of apical dominance at different development stages, perennial rice rhizome axillary buds at the compression nodes germinated more rapidly than others and developed into new seedlings. The axillary buds at the high-position nodes in annual rice grew faster than those at other nodes. Furthermore, the global gene expression patterns of PR23 rhizome buds at compression nodes grown for 1, 3, 4, and 5 days after apical spike removal were analyzed by transcriptome sequencing. Compared with the control buds without apical removal, 264, 3,484, 2,095, and 3,398 genes were up-regulated, and 674, 3,484, 1,594, and 1,824 genes were down-regulated in the buds grown for 1, 3, 4, and 5 days after apical spike removal, respectively. Trend analysis of the expressed genes at different time points was performed and co-expression network was constructed to identify key genes in rhizome axillary bud regrowth. The results showed that 85 hub genes involved in 12 co-regulatory networks were mainly enriched in the light system, photosynthesis-antenna protein, plant hormone signal transduction, ABC transporter and metabolic pathways, which suggested that hormone and photosynthetic signals might play important roles in the regulation of rhizome axillary bud regeneration in perennial rice. Overall, this study clarified the differences in the regeneration patterns of axillary buds between perennial and annual rice and provided insight into the complex regulatory networks during the regeneration of rhizome axillary buds in perennial rice.

19.
BMC Plant Biol ; 11: 18, 2011 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-21261937

RESUMO

BACKGROUND: Rhizomatousness is a key component of perenniality of many grasses that contribute to competitiveness and invasiveness of many noxious grass weeds, but can potentially be used to develop perennial cereal crops for sustainable farmers in hilly areas of tropical Asia. Oryza longistaminata, a perennial wild rice with strong rhizomes, has been used as the model species for genetic and molecular dissection of rhizome development and in breeding efforts to transfer rhizome-related traits into annual rice species. In this study, an effort was taken to get insights into the genes and molecular mechanisms underlying the rhizomatous trait in O. longistaminata by comparative analysis of the genome-wide tissue-specific gene expression patterns of five different tissues of O. longistaminata using the Affymetrix GeneChip Rice Genome Array. RESULTS: A total of 2,566 tissue-specific genes were identified in five different tissues of O. longistaminata, including 58 and 61 unique genes that were specifically expressed in the rhizome tips (RT) and internodes (RI), respectively. In addition, 162 genes were up-regulated and 261 genes were down-regulated in RT compared to the shoot tips. Six distinct cis-regulatory elements (CGACG, GCCGCC, GAGAC, AACGG, CATGCA, and TAAAG) were found to be significantly more abundant in the promoter regions of genes differentially expressed in RT than in the promoter regions of genes uniformly expressed in all other tissues. Many of the RT and/or RI specifically or differentially expressed genes were located in the QTL regions associated with rhizome expression, rhizome abundance and rhizome growth-related traits in O. longistaminata and thus are good candidate genes for these QTLs. CONCLUSION: The initiation and development of the rhizomatous trait in O. longistaminata are controlled by very complex gene networks involving several plant hormones and regulatory genes, different members of gene families showing tissue specificity and their regulated pathways. Auxin/IAA appears to act as a negative regulator in rhizome development, while GA acts as the activator in rhizome development. Co-localization of the genes specifically expressed in rhizome tips and rhizome internodes with the QTLs for rhizome traits identified a large set of candidate genes for rhizome initiation and development in rice for further confirmation.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Oryza/genética , Rizoma/genética , Regulação para Baixo/genética , Meristema/genética , Análise de Sequência com Séries de Oligonucleotídeos , Especificidade de Órgãos/genética , Folhas de Planta/genética , Análise de Componente Principal , Regiões Promotoras Genéticas/genética , Locos de Características Quantitativas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sorghum/genética , Regulação para Cima/genética
20.
BMC Genet ; 12: 53, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21631950

RESUMO

BACKGROUND: Cytoplasmic effects on agronomic traits--involving cytoplasmic and nuclear genomes of either different species or different cultivars--are well documented in wheat but have seldom been demonstrated in rice (Oryza sativa L.). To detect cytoplasmic effects, we introgressed the nuclear genomes of three indica cultivars--Guichao 2, Jiangchengkugu, and Dianrui 449--into the cytoplasms of six indica cultivars - Dijiaowujian, Shenglixian, Zhuzhan, Nantehao, Aizizhan, and Peta. These 18 nuclear substitution lines were evaluated during the winter season of 2005 in Sanya, Hainan, China, and during the summer season of 2006 in Kunming, Yunnan, China. The effects of 6 cytoplasm sources, 3 nucleus sources, 2 locations and their interactions were estimated for plant height, panicle length, panicle number per plant, spikelet number per panicle, grain weight, filled-grain ratio, and yield per plot. RESULTS: For five of the seven traits, analysis of variance showed that there were no significant cytoplasmic effects or interactions involving cytoplasmic effects. The effect of cytoplasm on 1000-grain weight was highly significant. Mean 1000-grain weight over the two locations in four of the six cytoplasms clustered close to the overall mean, whereas plants with Nantehao cytoplasm had a high, and those with Peta cytoplasm a low mean grain weight. There was a highly significant three-way interaction affecting filled-grain ratio. At Sanya, cytoplasms varied in very narrow ranges within nuclear backgrounds. Strong cytoplasmic effects were observed only at Kunming and in only two of the three nuclear backgrounds; in the Jianchenkugu nuclear background, there was no evidence of strong cytoplasmic effects at either location. In the Dianrui 449 and Guichao 2 nuclear background evaluated at Kunming, filled-grain ratios of the six cytoplasms showed striking rank shifts CONCLUSIONS: We detected cytoplasmic variation for two agronomically important traits in indica rice. The cytoplasm source had a significant effect on grain weight across the two experimental locations. There was also a significant cytoplasmic effect on filled-grain ratio, but only in two of three nuclear background and at one of the two locations. The results extend our previous findings with japonica rice, suggesting that the selection of appropriate cytoplasmic germplasm is broadly important in rice breeding, and that cytoplasmic effects on some traits, such as filled-grain ratio, cannot be generalized; effects should be evaluated in the nuclear backgrounds of interest and at multiple locations.


Assuntos
Herança Extracromossômica , Oryza/crescimento & desenvolvimento , Oryza/genética , China , Locos de Características Quantitativas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa